
 Advanced search

Linux Journal Issue #123/July 2004

Features

Rapid Application Development with Python and Glade by David
Reed

When you're writing complicated business apps, spend more
time on your business logic and let GladeGen do the rest.

Cross-Platform Network Applications with Mono by Ian Pointer
Build and run a useful blogging app and get a jump on .NET-
compatible development.

Developing for Windows on Linux by Joey Bernard
Use these tools from the MinGW Project to write, maintain and
test Win32 apps on any GNU system.

A GUI for ps(1) Built with Mozilla by Nigel McFarlane
Make your apps run anywhere your browser does with the
development framework that's already on your desktop.

Indepth

Eclipse Goes Native by John Healy, Andrew Haley and Tom Tromey
Now you don't have to wait for a JVM to run your Java app on a
new platform.

Clusters for Nothing and Nodes for Free by Alexander Perry, Hoke
Trammell and David Haynes

The processing power you need for big nightly jobs is all around
you, and the desktop users won't miss it.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/123/7421.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/7430.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/7128.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/7287.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/7413.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/7185.html

Embedded

uClinux for Linux Programmers by David McCullough
Do you want the development ease of Linux or the low price of
an MMU-less processor? How about both?

Toolbox

At the Forge Slash by Reuven M. Lerner
Cooking with Linux It's a Cross Platform, All Right! by Marcel Gagné
Paranoid Penguin Secure Anonymous FTP with vsftpd by Mick Bauer

Column

EOF by Ibrahim Haddad
Carrier Grade Linux

Review

Arkeia 5.2 Network Backup by Dan Wilder

Departments

From the Editor
Letters
upFRONT
Best of Technical Support
New Products

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/123/7221.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/7519.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/7526.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/7520.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/7463.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/7303.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/7527.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/7490.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/7518.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/7528.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/7530.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Rapid Application Development with Python and Glade

David Reed

Issue #123, July 2004

Create and modify your Python application's GUI using the easy design tool
Glade; then, automate the process of setting up event handlers.

Writing GUI programs involves two basic steps. First, you need to write the code
to create the interface, with elements, such as menus, and widgets, such as
buttons, labels and entry fields. You then need to write the code that executes
when events occur, such as when a button is pressed or a menu item is
selected. When the program runs, it enters an event loop that repeatedly waits
for an event and then calls the event handler, also known as a callback function,
that was defined for that event. For example, you write a function to be called
when a button is pressed. Writing code to display the widgets, defining the
functions to be called when events occur and connecting each event to the
specific function is a tedious process to do by hand.

For many widget sets, programs exist to lay out the GUI visually. Damon
Chaplin wrote the Glade program to allow users to create an interface visually
using the GTK/GNOME widgets and also to specify which functions to call when
events occur. Glade stores the layout of the widgets and the callbacks as an
XML file. Glade also generates a C or C++ program that contains all the calls to
create the widgets in the specified layout, connect the callbacks and define
empty functions for each callback. However, Glade does not create Python
code. The GladeGen program I wrote generates Python code based on the
Glade XML file.

If you change your GUI using Glade, you need Glade to output the new C/C++
code to create the GUI. This can be annoying, especially if you have modified
the code that creates the GUI. James Henstridge wrote libglade to alleviate the
need to hard code the GUI-generating code in your program. James also started
and helps maintain the GTK/GNOME Python bindings, a Python module that
provides access to GTK/GNOME C functions. With libglade, your program does
not contain code to create the interface. Instead, libglade parses the XML file

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

when your program is run and creates the interface on the fly at runtime. Thus,
whenever you change your GUI using Glade, you do not need to change the
code that creates the interface.

I prefer using Python except in cases of code containing a lot of computation
where speed is crucial. Python's high-level data structures and interpretative
environment make it quick to develop, modify and maintain code. The
September 2003 issue of Linux Journal contains an introductory article on
PyGTK and Glade (see the on-line Resources section) that readers unfamiliar
with Gtk and Glade will find helpful.

The motivation for GladeGen was a patient database/accounting system I was
writing for the optometric/optical offices where my wife works. Before my wife
started working with them, they were using a Microsoft Access database
system someone had written. That person had moved out of state, and the
office wanted a new system. They talked to other optical offices around town to
find out what software was being used. People at each office complained about
the software; the systems were buggy and expensive. I convinced the owner of
my wife's office that I could write a custom system during the summer for
about the same cost as other new software, and that it would do exactly what
they needed it to do. But, he had to let me use Linux.

The end result is a Python/GTK program that uses PostgreSQL as the back-end
database to store all of the data. This allows all of the searching and tabulating
to be done by SQL commands. The Python code provides the layer of code that
communicates between the PostgreSQL database and GTK interface. Both GTK
and PostgreSQL are written in C, so they run fast. The Python code is more than
fast enough on modern processors for handling the communication between
GTK and PostgreSQL. The PyGTK front end and PostgreSQL database allow the
client front end to access any database server so they can run the front-end
GUI on multiple computers and access the database server. The client/server
setup allows them to run the front-end GUI and access the PostgreSQL server
at other locations over the Internet through an SSH-encrypted connection. It
also allows me to have remote access from home when users have questions
about the system.

The program has more than 40 windows, including those for entering patient
information, frame/lens purchases, contacts, reconciling insurance payments
and entering and tracking the frame inventory. I decided to use Glade to create
each window, and because I wanted to use Python, I needed to write my own
software to automate code creation for each window. The result is GladeGen.

 GladeGen Usage

The code I have written automates the task of creating Python code to create
the interface, connect the callback functions, provide access to the widgets and
create empty callback functions based on the Glade XML file. Using this
software, the steps for creating a GUI program are 1) use Glade to make the
interface visually and save the XML file, 2) run GladeGen to generate the code
and 3) write the code for the callbacks.

The code GladeGen creates contains all the code to run the application and
display your interface, along with empty callback functions. It also allows you to
use Glade to modify the interface. When you rerun GladeGen, it regenerates
the application code with any additional callbacks and new widgets, without
changing or modifying any of the existing code.

Here, I demonstrate how to use GladeGen by creating a math quiz program.
The complete program is available from the Linux Journal FTP site (see
Resources). GladeGen works with the GTK 2.x widget set and the corresponding
version of Glade, which on Red Hat systems is named glade-2. If you are
familiar with the GTK widgets, Glade is fairly intuitive to use. If not, you should
familiarize yourself with the various container widgets, including table and
horizontal/vertical box.

Using glade-2, I created the first version of the interface. I started with a
GtkWindow and added a GtkVBox. I placed two GtkFrame widgets in the vertical
box and a GtkTable in each frame. All the other widgets are placed in the two
table widgets. I used GtkSpinButton widgets to allow the user to select the
number of digits and operators in the problem. GtkCheckButton widgets are
used to indicate which operators should be included in the problem. GtkEntry
widgets are used for the problem, the answer and information on the number
of correct/incorrect problems answered. The other widgets are GtkLabel and
GtkButton widgets.

I saved the Glade file as mathflash.glade. Glade does not ask if you want to save
your file, so you need to remember to save it before quitting if you make any
changes to your interface. See Figure 1 for a screenshot of the interface and
Glade. It shows the reset_button is configured to call the function
on_reset_button_clicked when the button is clicked.

https://secure2.linuxjournal.com/ljarchive/LJ/123/7421f1.large.jpg

Figure 1. Setting the Callback for a Button in Glade

Glade allows you to give each widget a name or provides a default name. For
the widgets we need to interact with, such as buttons and data entry widgets, I
provided names that match their intended uses. With Glade, you also specify
the signals you want to connect to callback functions. As mentioned above,
using Glade, I specified that on_reset_button should be called when the
reset_button is clicked.

Next, I used GladeGen to produce template code for the application using the
command GladeGen.py mathflash.glade MathFlash MathFlash.
The command-line arguments are the name of the Glade XML file, the name of
the Python file/module to create and the name of the class to create in that file/
module. The resulting MathFlash.py file can be found in Listing 1. The
MathFlash class subclasses a GladeWindow class, the class that uses libglade to
connect all the callbacks listed in the handlers variable. It also creates a
dictionary, self.widgets, that maps each widget name in the widget_list variable
to the corresponding GtkWidget instance. The GladeWindow subclass provides
default show and hide methods so that the template code can be run
immediately to view the interface before you start writing the callbacks.

Listing 1. GladeGen produced this Python code from the XML file created in

Glade.

#!/usr/bin/env python

#--
MathFlash.py
Dave Reed
02/28/2004
#--

import sys

from GladeWindow import *

https://secure2.linuxjournal.com/ljarchive/LJ/123/7421f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7421f1.large.jpg

#--

class MathFlash(GladeWindow):

 #--

 def __init__(self):

 ''' '''

 self.init()

 #--

 def init(self):

 filename = 'mathflash.glade'

 widget_list = [
 'window1',
 'plus_check',
 'minus_check',
 'multiply_check',
 'divide_check',
 'digits_spin',
 'operators_spin',
 'correct_entry',
 'wrong_entry',
 'pct_entry',
 'problem_entry',
 'answer_entry',
 'submit_button',
 'reset_button',
 'exit_button',
 'new_button',
 'result_entry',
]

 handlers = [
 'on_operator_check_toggled',
 'on_submit_button_clicked',
 'on_reset_button_clicked',
 'on_exit_button_clicked',
 'on_new_button_clicked',
]

 top_window = 'window1'
 GladeWindow.__init__(self, filename,
 top_window, widget_list,
 handlers)

 #--

 def on_operator_check_toggled(self, *args):
 pass

 def on_submit_button_clicked(self, *args):
 pass

 def on_reset_button_clicked(self, *args):
 pass

 def on_exit_button_clicked(self, *args):
 pass

 def on_new_button_clicked(self, *args):
 pass

#--

def main(argv):

 w = MathFlash()
 w.show()
 gtk.main()

#--

if __name__ == '__main__':
 main(sys.argv)

The GladeGenConfig.py file allows customizations to specify the program
author, the widget types you want put in the self.widgets dictionary and how
the created Python code file should look. In the GladeGenConfig.py file
provided, the widget types GtkWindow, GtkButton, GtkSpinButton,
GtkCheckButton, GtkEntry, GtkCombo and GtkTextView are listed. It rarely is
necessary to access a GtkLabel widget and the container widgets, so I have not
included them in the include_widget_types list in GladeGenConfig.

The created MathFlash.py file contains methods for each of the callback
functions with the Python no-op statement pass. The method is declared with
the self parameter and *args for a variable length parameter list. In Python,
*args allow the function/method to be passed as many parameters as the caller
wants, and they are received in the calling function as a tuple. Most of the
callbacks are passed the widget that the event occurred in and sometimes
additional parameters specific to the event. The API reference available on the
GTK Web site shows the exact parameters for each callback (see Resources).
Now, we need to add code to the callbacks and any other code the program
needs. For this program, about 60 additional lines of Python code result in the
final MathFlash.py file. An experienced Glade user and Python programmer
should be able to create the entire program from scratch in less than 30
minutes. For more complicated programs, the Model/View/Controller design
pattern could be used. The code GladeGen produces would play the role of the
controller.

Let's examine the callback on_submit_button_clicked to understand the details
of how to use the PyGTK code GladeGen produces. Here is the Python code I
wrote:

def on_submit_button_clicked(self, *args):

 prob = self.widgets['problem_entry'].get_text()
 ans = eval(prob)
 user = int(self.widgets['answer_entry'].get_text())
 self.total += 1
 if ans == user:
 self.correct += 1
 self.widgets['result_entry'].set_text('Correct')
 else:
 self.widgets['result_entry'].set_text(
 'Wrong, the answer is %d' % ans)
 self.show_results()

The C GTK API contains the function G_CONST_RETURN gchar*
gtk_entry_get_text(GtkEntry *entry). Because Python is an object-oriented
language, the bindings are set up as methods for the class. For the Python
bindings, the gtk_ and widget name prefixes are removed from the name of the
function and called with a Python instance of that widget. This same pattern

applies to all of the GTK functions. Using the self.widgets instance, the
corresponding Python call becomes
self.widgets['problem_entry'].get_text(), where problem_entry
is the name for the entry widget in the Glade XML file.

I then used the Python eval function to determine the answer to the problem.
This is much simpler than writing my own parser to evaluate the expression.
The usual rule that multiplication and division have a higher precedence than
addition and subtraction applies. Use of the eval function can be a security
issue if you allow the user to enter the string that is evaluated, but in this case
our program is producing the string that is evaluated, so we do not need to
worry about it.

If you modify the Glade XML file, you can rerun GladeGen and it will add any
new callback methods without overwriting or losing any code you have written
other than the init method, which you should never modify. GladeGen
produces a new init method each time you run it. The init method contains the
names of the widgets and callbacks, so anytime the Glade file is updated, it
needs to be reproduced. In my case, I later added a button to reset the stats.
When I reran GladeGen, it added an empty on_reset_button_clicked method
and provided a new init method that listed the reset_button widget and
on_reset_button_clicked callback. Because I am using libglade to create the
interface at runtime, no additional modifications are necessary.

 How GladeGen Works

GladeGen first determines whether the specified module/file exists; if not, it
creates a basic file with author information and a class definition. GladeGen
then parses the Glade XML file and finds a list of widgets and handlers. Python
provides the inspect module that allows a program to determine what
functions, classes and methods an existing Python module contains and which
lines correspond to each. GladeGen uses the inspect module to determine
which callbacks have been written already so that they are not replaced with an
empty callback method. GladeGen adds any new callbacks to the bottom of the
class definition. The inspect module also allows GladeGen to determine which
lines contain the init method and to replace them with a new init method
containing all the widgets and handlers in the latest Glade XML file.

Python supports both the standard DOM and SAX interfaces for parsing XML
files. The SAX interface is an event-driven model in which the user sets up
functions to be called as XML tags are processed. The DOM interface reads the
entire XML file into memory and provides functions for traversing the XML
hierarchy and retrieving the information. For GladeGen, we wanted to extract
only certain information from the XML file, so the DOM interface is simpler to
use. Also, the size of a Glade XML file is small enough that reading the entire file

into memory and generating the Python representation of it should not require
a large amount of memory. Using the DOM interface, the get_xml method in
the GladeGen class extracts the widget names and handler names from a Glade
XML file using about 30 lines of Python code.

 Summary

Glade and GladeGen automate much of the tedious, repetitive work that goes
into creating graphical programs by removing the need to write code to create
and store widgets and set up the callback functions. This allows for rapid
application development of Python/GNOME/GTK applications. The finished
Math Flash is shown in Figure 2. The GladeGen software can run on any system
that supports Python and GTK, including Linux, UNIX, Mac OS X and Microsoft
Windows.

Figure 2. Math Flash

A number of features could be added to this system. Instead of using the
generic *args parameter for the created callback functions, the parameters
could be specified explicitly, based on the widget and callback prototype. I also
plan to add a graphical front end to the program for configuring the options in
the GladeGenConfig.py file. The GladeGen software is released under the GPL.
If anyone is interested in modifying/extending it, please let the author know.

Acknowledgements

Thanks to one of my students, Jeremiah Schilens, who worked on an earlier
version of this project with me.

Resources for this article: /article/7558.

David Reed lives in Columbus, Ohio with his wife and two dogs. He has worked
with UNIX systems since 1991 and Linux since 1997. He holds a PhD in

https://secure2.linuxjournal.com/ljarchive/LJ/123/7421f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7421f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7421f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7558.html

volumetric graphics from The Ohio State University and currently teaches
computer science at Capital University. Capital uses a mixture of Python, C++
and Java throughout its CS curriculum. David can be reached at
dreed@capital.edu.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:dreed@capital.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/toc123.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Cross-Platform Network Applications with Mono

Ian Pointer

Issue #123, July 2004

Curious about .NET? Try out this useful sample app that exercises the GUI and
XML-RPC features of Mono.

Mono is Ximian's open-source implementation of Microsoft's .NET development
framework. .NET contains several different technologies: a set of compilers for
many different languages (including Microsoft's new language, C#) that
generates platform-independent bytecode; a virtual machine known as the
Common Language Runtime (CLR) that runs these bytecodes; and a class
library full of useful programs for performing actions ranging from file I/O to
GUI creation and operation.

The Mono implementation includes a CLR that runs on Linux, BSD-based
systems (including Mac OS X) and Windows, plus compilers for C# and Basic.
Mono is a work-in-progress, and many parts of the .NET class library have yet to
be implemented, specifically the Windows.Forms group that contains classes
for working with the Windows GUI. However, the Mono developers have
released bindings for the GTK user-interface toolkit, so cross-platform graphical
applications can be constructed even without 100% .NET compatibility. This
article describes how to use C#, Mono and Linux to write a useful program,
MonoBlog, that can run on any system that runs Mono and GTK. Some
familiarity with Glade and C# is assumed, but only at a basic level. Helpful
tutorials can be found in the on-line Resources section.

 Obtaining Mono

The Mono Web site has instructions for installing the system on Linux, Mac OS
X and Windows platforms (see Resources). You also need two additional C#
libraries, GTK# and XmlRpcCS. The systems that MonoBlog runs on require the
base GTK libraries, which are available on most Linux systems. They probably
need to be installed on Windows and Mac OS X systems, however; packages

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

can be found on the GTK Web site (see Resources). Instructions for installing
these libraries can be found on their respective Web pages.

 MonoBlog, a Weblog Editor

MonoBlog is a Weblog editor that can add new posts to a Weblog and edit old
ones, as well as provide a way for a user to change configuration settings. Most
Weblog systems implement a common base of functionality known as the
MetaWeblog API. MonoBlog uses this to communicate with a variety of
different Weblog programs, rather than write a separate back end for Movable
Type, LiveJournal or Radio Userland systems. The complete C# code for this
example is available on the Linux Journal FTP site (see Resources).

Figures 1 and 2 show the user interface of MonoBlog, created using Glade on
Linux. The main window in Figure 1 has text controls for entering Weblog titles
and the content, plus a series of buttons for updating the Weblog, clearing the
forms and quitting the program. The expanse of white on the left-hand side is a
GTKTreeView control, which displays a list of older posts the user can click on in
order to update. The window shown in Figure 2 is a simple preferences panel
where users enter the information that allows MonoBlog to communicate with
their Weblogs.

Figure 1. The Main Window

Figure 2. The Preferences Window

 Creating the GUI with libglade

One of GTK's useful features is libglade, a library that allows us to construct a
program's GUI by reading in the XML files created by Glade, specifying the
layout of the widgets in the code itself. The GTK# binding includes this
functionality, so building the GUI is quite easy. At the start of MonoBlog, we
import the GTK and Glade namespaces with the using statement. Then, in the
constructor, we have:

Application.Init();

Glade.XML gxml = new Glade.XML("monoblog.glade",
 null, null);
gxml.Autoconnect(this);

Application.Run();

The calls to the Application class are required in all GTK programs.
Application.Init() performs GTK initialization, and Application.Run() passes
control of the program to the GTK main loop, which watches for events and
reports signals back when they occur. The standard Glade.XML constructor
takes three arguments: a string containing the filename of the Glade file, a
string that tells the object the node in the Glade tree where it should start
building the interface and, finally, a string that can be used to specify a
translation domain for the Glade file in question.

MonoBlog needs to have access to all the nodes in the XML file, both the main
window and the preferences panel. No translation is required, so the second
and third arguments are null. The Autoconnect() method binds the object given
as an argument with the signal handlers and objects defined in the Glade file,
allowing that object to respond to events and manipulate widgets. As
MonoBlog is a small program, I have contained all the signal handling within

the main class. In larger, more complex systems, it might be advisable to
separate signal handling out into another class.

To access the widgets, a special declaration is required. The widget must be
declared as an instance variable, using a custom attribute:

[Glade.Widget] GTKWidgetType widgetname;

with GTKWidgetType being replaced by the actual object type concerned, and
widgetname being the name of the widget as defined in the Glade file. After
Autoconnect() returns, these widgets can be used as if they had been created in
the program itself.

 Retrieving Old Entries

When the program loads, the first action it performs is to query the Weblog and
download the recent posts, displaying them in the TreeView widget. The
method getRecentPosts() in the MonoBlog class handles this; it is called in the
main constructor if preferences exist, as the method needs to know about the
Weblog it is contacting. The MetaWeblog API provides a function call,
metaweblog.getRecentPosts, that returns a specified number of old posts or as
many as it can find if fewer posts exist than we desire.

The communication with the Weblog is straightforward:

XmlRpcRequest client = new XmlRpcRequest();
client.MethodName = "metaWeblog.getRecentPosts";
client.Params.Add(BlogID);
client.Params.Add(ServerUser);
client.Params.Add(ServerPass);
client.Params.Add(NumberOfPosts);
XmlRpcResponse response = client.Send(ServerURL);

All that is required is to create a new XmlRpcRequest object, set the required
API method name, fill in the necessary arguments and send it to the Weblog.
The Weblog then returns a response, in this case an array of posts, which is
stored in the Value field of the XmlRpcResponse object. Next, we need to
update the GTKTreeView control.

In GTK 2.0 and above, this control uses a model-view-controller approach. Here,
then, we create a new model object and pass it to the control:

System.Type[] ListTypes = new System.Type[3];
ListTypes[0] = typeof(string);
ListTypes[1] = typeof(string);
ListTypes[2] = typeof(string);
ListStore store = new ListStore(ListTypes);
treeview1.Model = store;

This model object creates a table with three columns. The ListStore object
needs to be passed an array of Type objects; each item in the array
corresponds to the type of column. A Weblog post contains three items—a title,
the content of the post and a unique identifier—all of which are strings, so here
all the columns have a String type. The rest of the method cycles through the
array, populating the model:

TreeIter iter = new TreeIter ();
foreach (Hashtable post in results) {
 String title = (String) post ["title"];
 String postid = (String) post ["postid"];
 String description = (String) post ["description"];

 store.Append (out iter);
 store.SetValue (iter, 0, new GLib.Value(title));
 store.SetValue (iter, 1, new GLib.Value(postid));
 store.SetValue (iter, 2,
 new GLib.Value(description));
}

This, by itself, isn't enough to display the titles in the tree. For that, we include
some code in the constructor, after the call to getRecentPosts():

TreeViewColumn TitleCol = new TreeViewColumn();
CellRenderer TitleRenderer = new CellRendererText();
TitleCol.AddAttribute (TitleRenderer, "text", 0);
treeview1.AppendColumn (TitleCol);

This adds a new column view to the tree. The AddAtrribute() method is hooked
to the title column of the model (the first) with the 0 argument. As all the user
requires is to see the title of an entry in the TreeView control; no other column
views are needed. The information, though, is stored in the model to make the
program more efficient.

 Editing Old Posts

When a user clicks on an entry, the desired result is for the program to display
the old entry in the text entry portions on the right-hand side of the window.
The MetaWeblog API has a method called metaweblog.getPost that pulls posts
from the Weblog. As they already have been downloaded in the
getRecentPosts() method, the program can get the data from the model instead
of communicating with the Weblog again. The row_activated signal is bound to
the method SelectOldPost using Glade, so whenever an item is double-clicked,
this code runs:

public void SelectOldPost(System.Object obj, EventArgs e) {
 TreeSelection currentSelection = treeview1.Selection;
 TreeIter iter;
 TreeModel model = treeview1.Model;
 currentSelection.GetSelected (out model, out iter);
 String selected = (string) model.GetValue (iter, 1);
 String oldTitle = (string) model.GetValue(iter,0);
 String oldEntry = (string) model.GetValue(iter,2);

 TextBuffer buffer = textview1.Buffer;
 entry1.Text = oldTitle;

 buffer.SetText(oldEntry);

 OldPostID = selected;
 EditingOldPost = true;
}

This method obtains the current selected item in the GTKTreeView control and
uses an iterator to index into the model and find the required values. It then
fills in the text fields with this information and updates two instance variables
that are needed when the user clicks on the Post button. If the program is
updating an older entry rather than creating a new entry, it needs to make a
different MetaWeblog API call, which needs the unique identifier of the post.
The variables OldPostID and EditingOldPost are updated to reflect this.

 Updating the Weblog

The clicked signal on the Update button is bound to the method
OnUpdateClicked. This process is too long to reprint in full in this article, but
the operation is simple enough. First, it gets the text from the two text controls
and creates a hash table representation of the post; this is required for the
MetaWeblog API call. Depending on whether the EditingOldPost flag is set, the
method then sends an XML-RPC request to the Weblog, using the
metaweblog.newPost or metaweblog.editPost calls as appropriate.
When the Weblog returns a successful response, indicating that it has been
updated, the method finally clears the text forms and allows the user to start
anew.

The other buttons on the main window, New Post and Quit, are short snippets
of code. Like the Post button, the clicked signals are bound in MonoBlog. New
Post is bound to a method that clears the text forms and sets the
EditingOldPost flag to false, allowing the user to start over. Quit, as expected,
exits MonoBlog using the Application.Exit() GTK call.

 Preferences

The .NET class library includes classes that handle reading in preferences from
an XML file. Listing 1 shows an example MonoBlog configuration file.

Listing 1. An Example XML Configuration File

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<add key="ServerURL"
value="http://www.test.com/mt-xmlrpc.cgi"/>
<add key="ServerUser" value="example"/>
<add key="ServerPass" value="password"/>
<add key="BlogID" value="1"/>
<add key="NumberOfPosts" value="10"/>
</appSettings>

</configuration>

The method getConfig(), shown below, reads in these values:

private bool getConfig {
 try {
 AppSettingsReader config = new AppSettingsReader();
 ServerURL = (string) config.GetValue("ServerURL",
 typeof(string));

 ServerUser = (string) config.GetValue("ServerUser",
 typeof(string));

 ServerPass = (string) config.GetValue("ServerPass",
 typeof(string));

 BlogID = (string) config.GetValue("BlogID",
 typeof(string));

 NumberOfPosts = (string)
 config.GetValue("NumberOfPosts", typeof(string));

 catch(Exception problem) {
 return false;
 }
 return true;
}

The AppSettingsReader object, by default, looks for a configuration file named
executable.config, so here it opens a file called monoblog.exe.config. Then, the
GetValue() method is used to determine the required preference values.
MonoBlog calls this method in its constructor before it attempts to query the
Weblog for old posts, so it has the required information. If the file does not
exist or if there is a problem reading the data, the method returns false. The
constructor only calls getRecentPosts() if this method returns true, preventing
garbage values from being used.

Updating the preferences is a more complex task. First, the Preferences option
in the main window's menubar is bound to the method OnPrefsActivate, using
Glade's Menu Editor. This brings up the dialog shown in Figure 2 and fills in the
fields with the current values, if any are defined. When the user clicks on the OK
button in this dialog, MonoBlog updates the variables and writes the new
information back out to the configuration file. Unfortunately, the .NET class
library doesn't have classes that update configuration files. As the configuration
here is fairly simple, I wrote a method called saveConfig() that opens the default
configuration file and writes the updated information back out to disk using a
series of Write() statements. This could be replaced with a more sophisticated
method that builds a proper XML document, but it was easier for this
application simply to write out the values in a plain manner.

 Error Handling

As MonoBlog makes calls to the Internet where things can go wrong that aren't
within the control of the program (network errors, name server problems and

so on), it contains some basic error handling functionality. The getRecentPosts()
and OnUpdateClicked() methods are wrapped in a try...catch block. The code
that accesses the Internet is executed, and if there is a problem, the following
catch block runs:

catch(Exception problem) {
 MessageDialog md =
 new MessageDialog(MonoBlogWindow,
 DialogFlags.DestroyWithParent,
 MessageType.Error,
 ButtonsType.Close,
 problem.ToString());

 md.Run();
 md.Destroy();
}

This causes an Error dialog to appear on screen, with the problem as reported
by the Mono CLR included as a text message. This allows the user to continue
and possibly fix the problem. However, at the time of this writing, exception
support is not working in the PPC branch of the Mono CLR, so if the program
runs on Mac OS X, the exception mechanism does not work and the program
fails silently. Work is proceeding on the PPC port, though, so by the time this
article makes it to print, this lack of support may no longer be an issue.

 Compiling and Running

Compiling C# programs is done by way of the mcs compiler. MonoBlog is
compiled with this command:

mcs -r gtk-sharp.dll -r glade-sharp.dll \
-r XmlRpcCS.dll -r glib-sharp.dll monoblog.cs

The -r option indicates a resource the program needs; here, we simply need to
specify which libraries MonoBlog uses. This produces a compiled bytecode file
called monoblog.exe. To run the program, we need to run the Mono CLR with
this file as a parameter:

mono monoblog.exe

Now, having developed the program on Linux, we can run the program on
Windows or Mac OS X with a minimum of fuss. Simply copy monoblog.exe,
monoblog.exe.config and monoblog.glade files to the other platform and run
them using the Mono CLR, as shown above.

Figures 3, 4 and 5 show MonoBlog running on Linux, Windows and Mac OS X
machines, respectively. No code has to be changed; the program works as is, as
long as all the libraries MonoBlog uses are present.

https://secure2.linuxjournal.com/ljarchive/LJ/123/7430f3.large.jpg

Figure 3. MonoBlog on Red Hat 9

Figure 4. MonoBlog on Windows XP

https://secure2.linuxjournal.com/ljarchive/LJ/123/7430f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7430f3.large.jpg

Figure 5. MonoBlog on Mac OS X

 Conclusion

Hopefully, this article has demonstrated how Mono and C# can be used to
create cross-platform applications quickly and easily. You can develop on one
platform and be assured that the program can run on any platform that runs
Mono and the GTK libraries. The MonoBlog program itself is ripe for further
experimentation. Some possible areas for improvement are extra formatting
options, more detailed error reporting, using the GtkHTML# bindings to create
an HTML preview window, and further implementation of the MetaWeblog API,
such as adding the ability to delete posts from a Weblog.

Resources for this article: /article/7557.

Ian Pointer is an unemployed Computer Science graduate in the UK. He can be
reached at ian@snappishproductions.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/123/7557.html
mailto:ian@snappishproductions.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/toc123.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Developing for Windows on Linux

Joey Bernard

Issue #123, July 2004

Build and test both the Linux and Microsoft Windows versions of your project
without rebooting. With the free tools MinGW and Wine, you might even call
Win32 a cross-platform API.

Like most people who read Linux Journal, I am a rabid fan of all things Linux,
GNU and open source. I run Linux on all of my personal machines, program on
them, play on them and evangelize to others whenever possible. But, a large
portion of the programming jobs out there involve writing applications for an
operating system from Redmond, Washington.

For my job, I've had to write some smaller applications for the Microsoft
Windows platform. Because speed of execution was an issue, I was going to
have to write them in C, directly using the Win32 API. It occurred to me that if I
was going to be using a standard language such as C, I might be able to develop
in my nice and cozy Linux home.

This article is a short guide on developing an application for Windows
completely within a Linux environment. I give a short introduction to Windows
programming and step through compiling and testing a sample program. I also
discuss Wine to simplify porting Windows source code to Linux.

 Win32 Programming

For those of us raised on the wholesome nutrition of a UNIX-style process
abstraction, the Windows model might seem downright heretical. The Windows
model is a preemptive, multitasking, multithreaded, message-passing operating
system. I'm limiting myself here to NT and its derivatives, 2000 and XP. All
processes are considered threads by the operating system. This makes the
process context slightly lighter than the traditional heavyweight process model
used in UNIX-like operating systems. As a consequence of this everything-is-a-
thread model, however, everything sits in global memory address space. With

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

the correct permissions and the correct address, one program could twiddle
another program's bits.

Another consequence of this is data structures created by the kernel don't sit at
any fixed address. This means it is up to the user program to lock down the
associated memory before using any global data structures, such as graphic
contexts. You also must remember to unlock these structures once you are
done with them, or they may help cause memory fragmentation.

Listing 1, available from the Linux Journal FTP site (see the on-line Resources
section), is a basic Hello World program. Most of it is boilerplate, and only the
portion within the switch statement is of any real interest. It does seem like
quite a bit of code for a basic program, but that is the problem with using a low-
level API. A good comparison on Linux would be writing code for X using Xt.

Instead of a main() function, a Windows GUI program starts at WinMain(). It's in
this function that your program does all of its initialization. Part of this
initialization includes defining the window class for the main window and
associating a callback function for it. Next, create the main window and show it
on the desktop. Control then passes to the message loop, and the callback
function processes the messages that are sent to the main window.

A good quick introduction to writing Windows programs is available from
winprog.org (see Resources). The authors of this Web site offer a good FAQ and
a fairly good tutorial covering all of the basics. Of course, the bible for Windows
programming is the massive book Windows Programming, by Charles Petzold.
If you can't find what you need in this tome, you always can use it to beat the
information out of your friendly neighbourhood Windows guru.

 Cross-Compiling

One of the amazing things about GCC is that it has been ported to so many
different platforms and operating systems. A great gift that comes from this is
the ability to compile binaries on one platform that are destined for a
completely different one. I regularly compile binaries for Solaris or Windows on
my Linux laptop. This is an amazing advantage, allowing development to occur
in a familiar, comfortable environment.

The purest way to set up is to go back to the source (see Resources). This way
you can compile code with the exact settings and for the exact platform you
want. Thankfully, this work has already been done. The good people at the
MinGW Project maintain a port of GCC for compiling Windows binaries. This
includes all of the associated files, such as the headers. The sources are
available here along with binary tarballs. These programs also have been
packaged for RPM-based and deb-based distributions. If you are running

Debian, you can use apt-get to retrieve the mingw32 and mingw32-runtime
packages. If you are running testing or unstable, you also should grab
mingw32-binutils.

Most of the compilation options in GCC are available here in MinGW, along with
a few extras. If you simply compile a program without any extra options, it can
be run from the console. This is what you would do if you wanted to write a
small, simple program that did not need a GUI. Because this is Windows, we
want a GUI program, so we write all of the required boilerplate we saw above
and add the -mwindows option to the compilation command. This sets up the
macros and library links you need in order to compile a standard Windows
executable. If you decide to write a more complicated Windows program that
uses some other Windows' feature, you need to add in the libraries explicitly
that you want linked.

In Windows you can define resources for your program. These include such
items as menus, bitmaps and text strings, among others. These resources are
defined in a separate file and need to be compiled separately before being
linked to your executable. That job falls to the program mingw-windres, which
creates an object file you subsequently can link to your executable.

To compile our simple example program shown in Listing 1, we use the
command:

mingw-gcc -o example1.exe example.c -mwindows

Replace the command mingw-gcc with whatever the package maintainer
called the compiler executable for your package. Presto, you now have a
Windows program ready for the world. Or is it?

 Debugging with Wine

Wine is the other great boon for developers who need to write programs for
the Windows platform. The massive amount of work that has gone into Wine by
its developers is phenomenal. This great program allows you to run Windows
programs from within Linux. The upshot to this is we now can run our freshly
compiled program and see if it actually works as advertised. To do this, use the
command wine example1.exe, and you should see the window appear on
your desktop (Figure 1). When you set up Wine, you have the options of
windows being managed by your window manager, not managed or displayed
on their own desktop. This affects how the window looks when you run it. What
you see in Figure 1 is an unmanaged application.

https://secure2.linuxjournal.com/ljarchive/LJ/123/7128f1.large.jpg

Figure 1. The Example Application Running Unmanaged under Wine

If you weren't lucky enough to have typed your program perfectly, you may
need to do some debugging to figure out what has gone wrong. Wine can be a
great asset here. The option --debugmsg [debugchannel] outputs the results
from one or more debug channels within Wine. Examples of the available
debug channels are:

• relay: writes a log message every time a Win32 function is called.
• win: tracks Windows messages.
• all: tracks all messages.

Don't use all unless you really need it. The amount of output quickly can
overwhelm even the most detail-obsessed programmer. A complete list of
available debug channels can be found on the Wine site.

 Compiling a Native Version for Linux

We now have a wonderful, working, bug-free program that runs under
Windows. Considering that all of the work was done under Linux, wouldn't it be
nice if we also could have our program run under Linux? The good folks at the
Wine Project have come to the rescue again. Part of the project includes
winelib, a library that provides the interface to Linux for your Windows source
code. In order to use this functionality, you need to install the wine-devel
package for your distribution. If you installed from source, the required files
already should be available.

https://secure2.linuxjournal.com/ljarchive/LJ/123/7128f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7128f1.large.jpg

Included in the wine-devel package is a Perl script called winemaker. This script
is designed to go through your source files and directories and make the
required changes to get it to compile correctly against winelib on Linux. Things
it checks include filename case and line ending characters. In addition, it
replaces file path back slashes with forward slashes and does many other
things. By default, it backs up any source files it needs to change. It converts
your project to winelib, making all kinds of automagic changes. To compile, you
simply run:

winemaker .
./configure --with-wine=/path/to/wine
make

to create a Linux executable. The dot you see above is there on purpose. You
hand in the path where winemaker can find the source files it needs to analyze;
here, the files are in the current directory.

In our case, our sample doesn't have any project files, and winemaker thinks
this is a bit of a problem. We can do the steps involved simply by hand. Instead
of executing mingw-gcc to compile our program, we use winegcc with the
exact same command-line parameters. This creates a file ending in .so and a
shell script to handle the program execution. We now have our Windows
source code compiled and running under Linux.

 Conclusion

I hope I've been able to convince some of the Windows developers out there
that they can work effectively from within Linux. With GCC allowing compilation
of an executable for Windows, and Wine providing great support in running
and debugging, there is no real reason to boot up Windows in most cases. The
only reason would be if your favourite IDE didn't run correctly under Wine, but
then you always could volunteer to fix that problem, right?

As this was only a short introduction, I did not cover support for MFC or the
creation of DLLs. Both of these topics are discussed in more detail at WineHQ
and the MinGW site.

Resources for this article: /article/7555.

Joey Bernard is a systems architect for CARIS, a GIS company in Canada. He's
never actually done any GIS work, mostly just Oracle, UNIX systems
programming and some Windows programming.

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/123/7555.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/toc123.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

 A GUI for ps(1) Built with Mozilla

Nigel McFarlane

Issue #123, July 2004

Give your command-line tasks a GUI with the Mozilla platform.

One of the more powerful features of Linux is the simple way that new
commands can be constructed using aliases, shell scripts and other textual
tricks. These techniques rely on a command-line interface, but what if you need
a tool with a GUI interface? Few techniques exist that are both easy to use and
professional looking. This article discusses a promising technique that uses the
Mozilla platform. It focuses on a rather hard but standard problem: how to
display the hierarchical information delivered by the ps(1) command usefully. A
recent version of Mozilla (at least 1.4) is required.

Numerous GUI toolkits are available for Linux, from Xt to Tcl/Tk. Tutorials for
these kits usually start with a button example. That's very routine, so let's see it
and move on. In Mozilla, GUIs are described using XML syntax. A document
named button.xul that specifies a button looks like this:

<?xml version="1.0"?>
<window xmlns="http://www.mozilla.org/keymaster/
↪gatekeeper/there.is.only.xul">
 <button label="Press Me"/>
</window>

The unmanageably long string, http://www.mozilla.org/keymaster/gatekeeper/
etc..., tells Mozilla this file isn't HTML. It's instead XUL, a GUI description
language that is Mozilla-specific and a dialect of XML. Make the button's
window appear with this command:

mozilla -chrome button.xul

This example is simple and not worth dwelling on, although there's a lot going
on even for a simple button. A ps(1) display is a far more ambitious goal, so let's
leap forward.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Instead of the simple <button> widget, one of Mozilla and XUL's bigger guns is
required, the <tree> widget. Some coding also is required and a lot more XML.
Here, the focus is on fast development, not on seamless perfection. The coding
part comes first.

To begin, ps(1) does the initial data gathering. Listing 1 shows the file
psdata.ksh, with mode 777.

Listing 1. A Command-Line Wrapper for ps(1)

#!/bin/ksh
export COLUMNS=300
ps h -ew -o '%p,%P,%C,%x,%z,%G,%n,%U,%a' \
 > /tmp/psdata

The output holds all the interesting fields, comma-separated with no header
line. Mandatory components are PID and PPID; the rest are optional but
informative fields, such as COMMAND. That's all traditional Linux requires.

The rest of the coding depends on Mozilla technology. The standard compiled
distributions provide at least two executables, mozilla and regxpcom. Here, a
binary named xpcshell is used as well. This binary is Mozilla's JavaScript
equivalent of the Perl interpreter; it has no GUI support. xpcshell sometimes is
a good starting point for development, but it is never essential. To acquire this
binary, a full compilation of Mozilla is required. First, check toolchain
requirements against www.mozilla.org/build. Next, grab the source by FTP or
remote CVS. A major release rather than a nightly release is recommended.
Once unpacked, follow standard compilation steps:

cd mozilla
./configure --disable-debug
make
make install

Debug versions are slow and have messy diagnostics; although harmless,
they're avoided here. The build takes an hour-plus to finish and requires up to
1GB of space. The resulting binaries are located in mozilla/dist/bin. They can be
run from that directory or from anywhere if the MOZILLA_FIVE_HOME and
LD_LIBRARY_PATH environment variables are set and exported to that
directory's absolute path. Now all the required binaries and shell scripts are
available.

With Perl, the output of ps(1) needs to be sucked up into a coding environment.
In this case, that's a JavaScript interpreter. To do this, you need more than
language syntax—you need support for I/O. In Perl, support is built into core
language functions. By comparison, JavaScript has no I/O functions. In Mozilla,

http://www.mozilla.org/build

that I/O support is added using objects. Such objects cannot come from a
scripting library, because the core language has no I/O. So, a Perl use or
require doesn't work. There are no back-tick operations either, such as echo
`pwd`. Instead, Mozilla has XPCOM.

XPCOM is an implementation of Microsoft's COM, and it works portably on
Linux/UNIX, Windows and Macintosh. It's restricted to a single process at the
moment; there's no DCOM. XPCOM/COM is the fastest way to add new
functionality to a scripting environment. It hooks up a compiled (say C or C++)
object to an object reference in the scripting language. The nearest Perl
equivalent is XM, but XPCOM does not require the re-linking that XM demands.
Mozilla includes thousands of XPCOM objects by default. XPCOM is not some
Java-like virtual machine at work, however. XPCOM objects usually are compiled
code that runs efficiently on the bare metal.

It might seem strange to use Microsoft ideas on Linux, but XPCOM is fully open
source and occupies a UNIX niche that has long been unaddressed: Linux/UNIX
lacks a useful intermediate-sized component model. There have been CORBA
and dynamic link libraries in the past, but those things are, respectively, very
heavyweight and very lightweight. XPCOM is suited perfectly to middle-sized
jobs, to application development of large binaries and to performance-critical
work. Here it's simply extremely handy.

Use of XPCOM or COM typically includes many calls to the Windows
QueryInterface() method. For the sake of Linux programmer sensibilities, this
article uses createInstance() and getService() instead. QueryInterface() is
available too.

Back to the code. Let's suck up the output of the ps(1) wrapper. Listing 2 shows
how.

Listing 2. Batch Loading of Foreign Data into xpcshell

const Cc = Components.classes;
const Ci = Components.interfaces;

var klass = {};
var psdata = null; // last results from ps(1).

klass.file = Cc["@mozilla.org/file/local;1"];
klass.process = Cc["@mozilla.org/process/util;1"];
klass.stream
 = Cc["@mozilla.org/network/file-input-stream;1"];
klass.jsstream
 = Cc["@mozilla.org/scriptableinputstream;1"];

function execute_ps() {
 // freeze until ps(1) is finished.
 var blocking = true, argv = [], result = {};
 var path = "/home/nrm/writing/psviewer/psdata.ksh"

 var file

 = klass.file.createInstance(Ci.nsILocalFile);
 var process
 = klass.process.createInstance(Ci.nsIProcess);

 file.initWithPath(path);
 process.init(file);
 process.run(blocking, argv,argv.length, result);
}

function read_raw_data() {
 const path = "/tmp/psdata";
 var mode_mask = 0x01, perm_mask = 0; // open(2)

 var file
 = klass.file.createInstance(Ci.nsILocalFile);
 file.initWithPath(path);

 var stream = klass.stream.createInstance(
 Ci.nsIFileInputStream);
 stream.init(file, mode_mask, perm_mask, 0);

 var jsstream = klass.jsstream.createInstance(
 Ci.nsIScriptableInputStream);
 jsstream.init(stream);

 var data = jsstream.read(file.fileSize);

 // got the file content. break it down.

 data = data.split("\012");

 for (var i = 0; i < data.length; i++)
 {
 data[i] = data[i].replace(/\s*,\s*/,",");
 data[i] = data[i].replace(/^\s*/,"");
 psdata.push(data[i].split(","));
 }
}

execute_ps();
read_raw_data();

The first part of this listing sets up some globals. The Components object is a
pre-existing object that acts as a directory of all existing XPCOM objects, called
components, and their supported interfaces (in the Java or COM sense). To get
an XPCOM object, find the right component (named with a string called a
Contract ID) and construct an interface object for it (also named by a string or
by a property name; the latter is used here). It's common to reuse components,
so once found, they're saved as handy property values on the klass object—
class is a reserved word in JavaScript.

Two defined functions are run at the end of this listing. execute_ps() simply
executes another process: the ps(1) wrapper script. For that it needs a file
object (an nsILocalFile) and a process object (an nsIProcess). run() invokes the
process using fork(). Mozilla is designed to do all this portably, but here only
Linux is supported because the path of the executable is hard coded as a
constant. The other function, read_raw_data(), sucks up the data. Mozilla uses
stream, transport and channel concepts the same as do some high-level
features of Java, but without the complexity of having to write any classes. A file
object is needed for the data file dumped by ps(1). A stream object opens a
content pathway to that file. A minor hack is required as well: a special

scriptable stream object must wrap the basic stream. With one read() call the
whole file is slurped up into a string. Next, some Perl-like regular expression
wizardry breaks the content down into an array of lines and then further into
an array of arrays. All data is treated as string data. To see if the data is
processed correctly, try using the diagnostic and rudimentary print() method
supplied with xpcshell. Alas, Mozilla currently does not support retrieving PIDs,
so files named /tmp/psdata.$$ don't work yet. That support is nearly here,
though.

Many XPCOM objects are in this script, so how are you to find the right ones? As
with any programming library, there's reference material. Look for .IDL files in
the Mozilla source code (or under mozilla/dist/idl), on the Web or read a book.

That's enough scripting to start with; scripting and tabular data are well
understood in Linux. To build the GUI, Mozilla requires XML, specifically, XUL.
That's a different world from the command line, and you have to be familiar
with XUL to succeed. Here, the process is broken down into easy stages. First,
Listing 3 and Figure 1 show an XUL <tree> widget.

Figure 1. Simple <tree> Widget with Static XUL Content

Listing 3. Plain XUL Code for a <tree> Widget with Static Content

<?xml version="1.0"?>
<?xml-stylesheet
 href="chrome://global/skin/global.css"
 type="text/css"?>
<!DOCTYPE window>
<window xmlns="http://www.mozilla.org/keymaster/
↪gatekeeper/there.is.only.xul"
 title="Process Tree">

<tree id="t1" flex="1">
 <treecols>
 <treecol flex="1" id="A"
 label="primary column" primary="true"/>
 <treecol flex="1" id="B" label="column 2"/>
 <treecol flex="1" id="B" label="column 3"/>
 </treecols>

 <treechildren id="titems" flex="1">

 <treeitem id="row1" container="true"
 open="true">
 <treerow>
 <treecell label="Cell"/>
 <treecell label="Cell"/>
 <treecell label="Cell"/>
 </treerow>

 <treechildren>

 <treeitem>
 <treerow>
 <treecell label="Cell"/>
 <treecell label="Cell"/>
 <treecell label="Cell"/>
 </treerow>
 </treeitem>
 </treechildren>
 </treeitem>

 <treeitem>
 <treerow>
 <treecell label="Cell"/>
 <treecell label="Cell"/>
 <treecell label="Cell"/>
 </treerow>
 </treeitem>

 </treechildren>
</tree>

</window>

The tree looks nice because the <?xml-stylesheet?> processing instruction drags
in the current Mozilla theme for free. Display this tree with the normal Mozilla
executable, using the -chrome option to rip away the normal navigation
buttons and other decorations:

mozilla -chrome static_tree.xul

The XML content (henceforth, the code) is a bit like an HTML <table> tag: both
column headers and rows of data are specified. The <treeitem> tag is the tricky
part; it can contain a <treechildren> tag, which allows the tree to have subtrees,
rather than only depth 1 leaf nodes. As seen in Figure 1, the tree widget has a
number of interactive features; subtrees can be opened and closed in the same
manner as any file explorer application, including Nautilus or Windows
Explorer. Columns can be added or deleted using the column picker, the small
icon at the extreme right of the tree header that holds column names.

If we wanted, JavaScript scripts could be used to insert the ps(1) data into this
XUL document dynamically. That's not hard, and all of the W3C's DOM
interfaces are available to do the job. Start by adding Element objects or even
use the .innerHTML property. This is an ambitious article, so instead you see a
fully data-driven approach, one that avoids hand-constructing any tree.

Listing 4 and Figure 2 show an XUL GUI without a tree. This one has a
<template> tag instead

Figure 2. Simple Templated GUI Based on Static RDF Content

Listing 4. XUL Code for Simple <template> Based Content

<?xml version="1.0"?>
<?xml-stylesheet
 href="chrome://global/skin/"
 type="text/css"?>
<!DOCTYPE window>
<window xmlns="http://www.mozilla.org/keymaster/
↪gatekeeper/there.is.only.xul">
 <description value="Before Template"/>
 <vbox
 datasources="trivial.rdf"
 ref="urn:example:items"
 containment="http://www.example.org/TestData#items"
>
 <template>
 <rule>
 <conditions>
 <content uri="?uri"/>
 <member container="?uri" child="?note"/>
 </conditions>
 <action>
 <hbox uri="?note">
 <description value="Repeated content"/>
 <description value="?note"/>
 </hbox>
 </action>
 </rule>
 </template>
 </vbox>
 <description value="After Template"/>
</window>

An XUL template is like a report template and not like a C++ template. It's the
basis for repeated sets of data. The template starts with the <vbox> tag that
has a datasources= attribute. The <action> part of the <template> is the
content to be repeated for every record that the <conditions> part identifies in
the trivial.rdf file. If you're an intermediate at make(1) or SQL or have touched
Lisp, Scheme or Prolog, you should be able to grasp how the template system
works. Listing 5 shows the trivial.rdf file that drives the display of Figure 2.

Listing 5. Trivial RDF File Matching Listing 4 Template

<?xml version="1.0"?>
<RDF

 xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
>
 <Description about="urn:example:root">
 <T:items>
 <Seq about="urn:example:items">
 <li resource="urn:example:item:A"/>
 <li resource="urn:example:item:B"/>
 </Seq>
 </T:items>

 </Description>
</RDF>

If this file is modified, Figure 2 can change even though Listing 4 hasn't been
altered. That's a data-driven arrangement. This file is RDF, one of the harder
W3C standards. Basically, it's a graph of nodes, each node holding three items

of data. The items are called subject, predicate (or property) and object. Simple
graphs are trees, so Listing 5 is a tree. Combine the <hbox> in Listing 4 with the
 tags in Listing 5, and the result appears as illustrated in Figure 2. This is
somewhat like an SQL join or join(1). For now, notice that the ref= attribute in
Listing 4 matches the <Seq> tag in Listing 5. This is how the two are matched up
in Mozilla's template processing logic. Mozilla support for RDF is basic rather
than strict, so nearly all the URIs and URLs can be made up on the spot, as
though they were variables or constants. That's done throughout this article.
Try adding another tag to Listing 5; restart Mozilla and display the page
again.

A tree is a good way to display a hierarchical list of processes, and a <template>
is a good way to drive the appearance of a tree direct from data. No RDF
document is available to work with, though; instead, we have a JavaScript array
of records. The solution is to put a <tree> and a <template> tag together and
set the RDF file to rdf:null = no file. A script is used to create the RDF
content directly from JavaScript data. Because of RDF's peculiar design, the
content can be dumped into the template in a careless manner and everything
simply works. That's a far cleaner but admittedly a more subtle solution than
hand-building an XUL tree from JavaScript. Another clean aspect of RDF and
templates is the tree can be updated anytime in a simple manner. This means
the window can display ps(1) data dynamically, as though a GUI version of
watch ps H were run. That dynamic step is beyond this article's scope,
however.

If the <tree> and <template> tags are put together, the final XUL document is as
shown in Figure 3 and Listing 6.

Figure 3. Final <tree> Widget with RDF Data Supplied from JavaScript

Listing 6. Final XUL for a Tree-Based View of ps Data

https://secure2.linuxjournal.com/ljarchive/LJ/123/7287f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7287f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7287f3.large.jpg

<?xml version="1.0"?>
<?xml-stylesheet
 href="chrome://global/skin/global.css"
 type="text/css"?>
<!DOCTYPE window>
<window xmlns="http://www.mozilla.org/keymaster/
↪gatekeeper/there.is.only.xul"
 title="Process Tree" flex="1">
 <script src="tree.js"/>

 <vbox flex="1">
 <description>
 Snapshot of processes currently running
 </description>

 <tree id="proc-tree"
 flex="1"
 datasources="rdf:null"
 ref="http://www.example.org/ProcData#ProcList"
 containment="http://www.example.org/ProcData#child"
 >
 <treecols>
 <treecol id="pid" primary="true" label="PID"
 minwidth="75"/>
 <splitter class="tree-splitter"/>
 <treecol id="pcpu" label="%CPU" minwidth="40"/>
 <splitter class="tree-splitter"/>
 <treecol id="time" label="TIME" minwidth="40"/>
 <splitter class="tree-splitter"/>
 <treecol id="vsz" label="VSZ" minwidth="40"/>
 <splitter class="tree-splitter"/>
 <treecol id="group" label="GROUP" minwidth="40"/>
 <splitter class="tree-splitter"/>
 <treecol id="nice" label="NI" minwidth="40"/>
 <splitter class="tree-splitter"/>
 <treecol id="user" label="USER" minwidth="40"/>
 <splitter class="tree-splitter"/>
 <treecol flex="1" id="args" label="COMMAND"
 minwidth="40"/>
 </treecols>
 <template>
 <treechildren>
 <treeitem open="true" uri="rdf:*">
 <treerow>
 <treecell
 label="rdf:http://www.example.org/ProcData#pid"/>
 <treecell
 label="rdf:http://www.example.org/ProcData#pcpu"/>
 <treecell
 label="rdf:http://www.example.org/ProcData#time"/>
 <treecell
 label="rdf:http://www.example.org/ProcData#vsz"/>
 <treecell
 label="rdf:http://www.example.org/ProcData#group"/>
 <treecell
 label="rdf:http://www.example.org/ProcData#nice"/>
 <treecell
 label="rdf:http://www.example.org/ProcData#user"/>
 <treecell
 label="rdf:http://www.example.org/ProcData#args"/>
 </treerow>
 </treeitem>
 </treechildren>
 </template>
 </tree>
</vbox>

</window>

Again, you can spot the datasource= and ref= attributes and the <template>
tag. The URLs beginning with rdf: indicate spots where RDF data should be put
into the template. In the earlier example, variables started with a question

mark. Two syntaxes are available to mark such spots. Not surprisingly, there's
one such piece of data for every column and every row.

The <splitter> tag is simply friendly decoration; it allows the user to resize the
columns. Doing so aids readability, as do the minwidth= and flex= attributes.
Figure 3 shows how the displayed process hierarchy naturally fills the tree.

Near the top of Listing 6, a <script> tag includes all the code from Listing 2, plus
more. When such scripts are included, there is an immediate security problem.
The problem is Mozilla technology must ensure secure display of remotely
located files and scripts, such as HTML pages. This is like the Java Server of
Origin rule. xpcshell is entirely unsecured, but the main Mozilla binary has
normal security. With an intensive configuration effort, security restrictions can
be overcome, but it's simpler to register the script as a package. To do that, all
the files have to be moved to the chrome, a directory inside the Mozilla install
area where all security restrictions are lifted. How to do that is explained
shortly, but first we finish the application with a script that moves the ps(1) data
from a plain JavaScript data structure into an RDF datasource. This script
replaces the static RDF file used earlier (Listing 7).

Listing 7. Insertion of Facts into an RDF Datasource from a Script

// --- globals ---
klass.datasource
 = Cc["@mozilla.org/rdf/datasource;1" +
 "?name=in-memory-datasource"];
klass.rdf
 = Cc["@mozilla.org/rdf/rdf-service;1"];

var schema = "http://www.example.org/ProcData#";
var props =
 ["pid", "ppid", "pcpu", "time", "vsz",
 "group", "nice", "user", "args"];

var rdf = klass.rdf.getService(Ci.nsIRDFService);

var root = rdf.GetResource(schema + "ProcList");
var child = rdf.GetResource(schema + "child");
var preds = [];

for (var p in props)
 preds[p] = rdf.GetResource(schema + props[p]);

// --- mainline ---

window.addEventListener("load",load_handler,true);

// --- functions ---

function update_tree() {
 var tree = document.getElementById("proc-tree");

 // get the in-memory ds, not the rdf:localstore
 var ds = tree.database.GetDataSources();
 ds = (ds.getNext(), ds.getNext());
 ds = ds.QueryInterface(Ci.nsIRDFDataSource);

 var sub, pred, obj;

 for (var i=0; i < psdata.length; i++)

 {
 if (psdata[i][1] == "0") // a root node
 sub = root;
 else // a child node
 sub = rdf.GetResource(
 schema + "process-" + psdata[i][1]);

 pred = child;
 obj = rdf.GetResource(
 schema + "process-" + psdata[i][0]);

 ds.Assert(sub, pred, obj, true);

 // add all properties for this process

 sub = obj;
 for (var j=0; j < psdata[i].length; j++)
 {
 pred = preds[j];
 obj = rdf.GetLiteral(psdata[i][j]);
 ds.Assert(sub, pred, obj, true);
 }
 }
}

function load_handler() {
 var tree = document.getElementById("proc-tree");
 var ds = klass.datasource.createInstance(
 Ci.nsIRDFInMemoryDataSource);
 tree.database.AddDataSource(ds);

 update_tree();
}

Listing 7 shows the extra script logic that substitutes for a static RDF file. Adding
the JavaScript data to the RDF used by the tree's template requires a process of
steps. Mozilla sucks up RDF data into an object called a datasource. Because
rdf:null has been specified, no datasource object exists, so one must be created
and attached to the template. load_handler() does that, after the document is
loaded safely. Using an onload handler is a standard HTML trick, and such tricks
apply equally well to XUL. The update_tree() function then fills that datasource
with RDF content for the template. It's done pretty simply. A double loop steps
through each data item in the JavaScript array. For each ps(1) process, Assert()
is called to create one RDF node of data (a triple of three items) that states PPID
X has child PID Y and a further set of RDF nodes that states PID X has USER A or
PID X has GROUP B. The <template> and the <tree> tag work together to sort
those RDF nodes automatically into a tree arrangement; this is like make(1)
calculating the dependency tree for all the targets stated in a given Makefile.
With this script acting in place of a static RDF file, the simple process viewer is
complete. Finally, the steps required to lift security by registering the code as a
package are:

M5H = $MOZILLA_FIVE_HOME
mkdir -p $M5H/chrome/psviewer/content
cp * $M5H/chrome/psviewer/content
vi $M5H/chrome/psviewer/content/contents.rdf
vi $M5H/chrome/installed-chrome.txt

Listing 8. Chrome Registration Information for the psviewer Package

<?xml version="1.0"?>
<RDF
xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
>

 <Seq about="urn:mozilla:package:root">
 <li resource="urn:mozilla:package:psviewer"/>
 </Seq>

 <Description about="urn:mozilla:package:psviewer"
 chrome:displayName="PSViewer"
 chrome:author="Nigel McFarlane"
 chrome:name="psviewer">
 </Description>
</RDF>

The first vi editing session creates the file contents.rdf. It must look exactly like
Listing 8. The second vi editing session adds to the file installed-chrome.txt. A
single line is added:

content,install,url,resource:/chrome/psviewer/content/

When Mozilla starts up, it examines this last file. If it is modified, the directories
listed are examined for contents.rdf files. Those files are then read, and like
make(1), Mozilla builds in its head a picture of all the packages known to exist.
All known packages have full security access, and Listing 8 adds the package
psviewer. The secure files now can be displayed and run with a URL such as:

mozilla -chrome chrome://psviewer/content/tree.xul

instead of:

mozilla -chrome file:///home/nrm/psviewer/tree.xul

The psviewer tool has first-class status within the Mozilla installation. If
necessary, it could be integrated with other applications, such as the Firefox/
Firebird browser or Thunderbird e-mail client. It also could be added as a menu
option to the Tools menu, for example.

There's a lot of technology in this article. The biggest mistake you can make is
to try to use all the features described here in your first Mozilla experiment.
Because validation of XML is less than verbose in Mozilla, you easily can
become tied in a knot. It's best to start with a simple project and work up to the
challenging combinations played with here. Although the output of ps(1) also
can be made into a dynamic HTML page, XUL is a more robust and professional
GUI in the end, fully integrated with the desktop.

Mozilla is a powerful GUI environment waiting to be explored. It is likely to
occupy the same niche under Linux that Visual Basic occupies under Windows.
Even better, Mozilla is a portable and cross-platform technology. Your projects

can be designed to work on BSD, HP-UX, SunOS, AIX and Mac OS X, as well as
Linux.

Nigel McFarlane is a freelance science and technology writer with an extensive
programming background. His latest book is Rapid Application Development
with Mozilla, ISBN 0131423436. Reach him at nrm@kingtide.com.au.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:nrm@kingtide.com.au
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/toc123.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Eclipse Goes Native

John Healy

Andrew Haley

Tom Tromey

Issue #123, July 2004

Red Hat's Eclipse Engineering team has freed the popular integrated
development environment from its ties to a proprietary Java Virtual Machine.

Eclipse is an open-source, extensible integrated development environment
(IDE) that's growing quickly in popularity. Written in Java, it provides a
multilanguage development environment that allows developers to code in
Java, C and C++. In response to the need for improved performance and
additional platform coverage for the Red Hat Developer Suite, of which Eclipse
is the core, we created a version of Eclipse that's compiled natively. Instead of
running on top of a virtual machine the way Java programs usually do—
although that can still be done if the user prefers—Red Hat's version of Eclipse
is compiled to binary and runs natively using the libgcj runtime libraries, similar
to the way a C program runs using the GNU C libraries.

To compile Eclipse natively, Red Hat's Eclipse Engineering team used GCJ, a free,
optimizing, ahead-of-time compiler for Java. GCJ can compile Java source code
to native machine code, Java source code to Java bytecode and Java bytecode to
native machine code. The approach we took involves using GCJ to compile Java
bytecode to native machine code.

This article discusses why native compilation was an attractive choice; explains
what we had to do to GCJ, libgcj and Eclipse to make it possible; and shows,
using a real-world example, that open-source Java has come a long way and
now is useful commercially.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Motivation

Two main factors from the early days of Developer Suite planning and
engineering drove us toward native compilation: platform coverage and
performance. Red Hat Enterprise Linux was scheduled to ship on several 64-bit
architectures, and we wanted to make sure Developer Suite could run on all of
them. One big problem was Eclipse had never been run on a 64-bit platform
and it contained some code, specifically the interface between SWT, the
graphics toolkit in Eclipse, and its native C libraries, that assumed 32-bit
addresses. Aside from having to create a clean 64-bit version of SWT, we were
faced with a more significant problem: no 64-bit Java Virtual Machine (JVM) for
x86_64, AMD's 64-bit architecture, existed at the time, and it didn't look hopeful
that one would be available before we had to ship.

Another problem we had was performance. Eclipse worked well on Microsoft
Windows but the version available at the time was pretty slow on Linux. We
found that startup alone took well over a minute, and early user testing found
that the interface was a little too sluggish for comfortable use. For example,
Eclipse is based on perspectives, which are collections of views and editors,
only one of which is visible at a time. Switching between them is something that
a user does fairly frequently. However, changing perspectives introduced
substantial delays we thought unacceptable for the enterprise development
market Red Hat Developer Suite was targeting.

The solution we came up with was to use GCJ to compile Eclipse into native
binaries that could run without having a JVM installed. We knew that native
compilation would help with the performance problems, because we would no
longer have the overhead that comes with the JVM layer. It also would solve the
platform coverage problem, as GCJ/libgcj was available on all of the 64-bit
platforms we had to support, although in some cases, such as x86_64, it still
needed a lot of work. Native compilation solved the technical problems we had
and gave us the additional benefits of reducing our external dependencies,
allowing us to make some significant improvements to open-source Java and to
demonstrate that open-source Java has matured to the point of being useful
commercially.

 Approach

At the outset of this project, we really didn't know if it was possible to compile
Eclipse with GCJ and expect it to run. First, Eclipse is a large program—more
than two million lines of code as counted by wc. We didn't know much about
Eclipse internals or what runtime facilities it might use. Second, GCJ's
background is in embedded systems, and we knew that work remained on
parts of the Java programming language, class loaders in particular, which are
used heavily by Eclipse. Third, the free class libraries were not complete. We

didn't know if Eclipse could use facilities we hadn't written yet or even whether
Eclipse might break the rules and use internal, undocumented com.sun.*
interfaces, as too many Java programs seem to do.

We therefore took a two-pronged approach to determining whether a project
like this could succeed. First, we used GCJ to make a list of the APIs used by
Eclipse that we did not or could not implement. To accomplish this, we wrote a
shell script that would try to compile each Eclipse Java archive library (jar file) to
object code. We then looked through the error messages to see what was
missing. The results of this script were not encouraging: we found a large
number of missing packages. Still, more investigation was required because
some things didn't make sense. For instance, there were dependencies on the
Swing graphical user interface classes, but we knew that Eclipse used SWT and
not Swing.

Further investigation showed that many of the weird undefined references
came not from Eclipse itself but from the third-party jar files included with it.
For example, Eclipse includes its own copy of the Ant build tool and its own
copy of the Apache Tomcat dynamic Web server. We knew that in many cases,
the referenced classes would not actually be invoked in the Eclipse
environment. This encouraged us to take another look at how to get Eclipse
working.

Our second angle of attack was to try running Eclipse using the bytecode
interpreter that comes with libgcj. By doing this, we reasoned, we would
concentrate on runtime bugs, including the aforementioned class loader
problems and missing functionality actually used by Eclipse.

This approach also was discouraging initially. We ran into problems not only
with class loading, but also with the fact that libgcj's implementation of
protection domains needed work. These are the bases for Java's secure
sandbox architecture, which allows untrusted code to be run in a secure way.
Problems in this area had an unfortunate shadowing effect—we had to fix each
bug before we could discover the next one.

 Changes to libgcj

Our first round of changes to libgcj was bug fixing only. We implemented
protection domains properly. Then, we made a pass over the entire runtime,
fixing bugs related to class loading. Because of the way class loading had been
implemented in libgcj, we had to modify all the places in the native code that
conceivably might load a class to forward the request to the appropriate class
loader.

Once this was done, we were able to start Eclipse using the libgcj bytecode
interpreter. At this point the question became, how can we take real advantage
of GCJ to compile Eclipse?

The naïve approach to this dilemma, namely precompiling all the classes and
linking them all together, had been ruled out by our investigations into Eclipse's
internals. This approach would clash with Eclipse's relatively sophisticated class
loading strategy.

More investigation revealed that most classes are loaded by instances of the
DelegatingURLClassLoader, which is a subclass of the standard URLClassLoader
that has been extended to understand Eclipse's plugin architecture. It seemed
like the best approach was to modify Eclipse to allow it to load precompiled
shared libraries as well as bytecode files. We reasoned that the required
changes would be localized due to the way plugin class loading had been
structured.

In fact, we had to go one step further and extend libgcj a bit as well. libgcj knew
how to load shared libraries invisibly in response to a call to, for example,
Class.forName(). However, this magic always happened at the level of the
bootstrap class loader. That wouldn't work well for Eclipse or for any other
application that defines its own class loaders, so we invented a new gcjlib URL
type. This is like a jar URL, but it points to a shared library. We also made some
minor extensions to our implementation of URLClassLoader so that gcjlib URLs
would be treated specially.

Doing this wasn't enough, however. We also had to solve the linkage problems.
In particular, if we compiled a jar file to a shared library, how could we prevent
the dlopen() of such a shared library from immediately failing due to
unresolved symbols? The solution to this problem was to resurrect and clean
up the -fno-assume-compiled option in GCJ. This option, which never had been
finished, enabled an alternative ABI that caused GCJ's output to resolve most
references at runtime rather than at link time.

The -f-no-assume-compiled option has various limitations and inefficiencies. On
the boards for the future is a cleaner way to achieve this same goal. On the GCJ
mailing list (see the on-line Resources section) this option is referred to either
as the binary compatibility ABI or -findirect-dispatch. This new ABI does
everything -fno-assume-compiled does, but in a much more efficient and
compatible way. Development is underway and is coming along nicely on this
new feature, one of several contributing to GCJ's enterprise readiness.

 Changes to Eclipse

Once all this was in place, we finally were ready to make our changes to Eclipse.
These turned out to be remarkably small. Most of the work involved making the
same sort of change in three different places. In essence, we modified Eclipse
so that when it's looking for a plugin's jar file, it also looks for a similarly named
shared library installed alongside it. If there is one, we rewrite the URL passed
to the class loader from a jar URL to a gcjlib URL. All rewriting is done
conditionally, so our natively compiled Eclipse still works with an unmodified
JVM. In other words, users are not locked in to native compilation if they would
rather use a JVM instead.

Once that was done, we wrote our own launcher that understood how to
bootstrap the Eclipse platform from shared libraries. This was accomplished in
a modest 90 lines of code.

 Profiling

After all that, Eclipse was mysteriously slow. Had we done something wrong?
Was GCJ-compiled code substantially worse than the code generated on the fly
by the current crop of just-in-time (JIT) compilers? Did -fno-assume-compiled
have enormous overhead?

One nice advantage of GCJ is its output generally can be treated in the same
way one treats any object code. That is, existing tools such as OProfile can be
applied to it directly without any change. And that, in fact, is how we
investigated our performance problem.

The first thing we noticed was a large number of exceptions being thrown
during platform startup. Amid the grumblings of compiler writers (exceptions
should be for exceptional circumstances), and although we were considering
changes to the GCJ runtime that would violate Java semantics, we noticed a
strange symbol in the OProfile output. It turned out that a small bit of buggy
assembly code deep in the libgcj runtime was causing a linear search of
exception handling tables rather than the expected binary search. The
overhead of this search through the entire program every time an exception
was thrown was vast. A fix to the errant assembly code proved this was the
problem, and suddenly our natively compiled Eclipse was able to start a second
faster than the stock version using a JVM. To quantify it a bit further, the startup
time dropped from more than a minute before the fix to less than 15 seconds
after it.

 Limitations and Shameless Hacks

Currently, we don't compile Eclipse directly from source to object code. Instead,
we compile to bytecode and then compile the jar files to shared libraries. This is
done for two reasons. First, a few bugs in the GCJ source compiler haven't been
fixed. Second, Eclipse comes with its own build scripts that compile from source
to bytecode. Reworking the Eclipse build system to allow building directly from
source to binary seemed like a much larger divergence from the upstream
sources than we were willing to maintain.

Also, we currently don't precompile all the jar files to shared libraries—some
remain as jar files and are interpreted at runtime. This is done because the
class libraries still are incomplete, and these jar files refer to classes that have
not been implemented yet.

One of our patches is unsuitable for the public GCJ. We had to disable the
compile-time bytecode verifier, as it was too buggy to compile some of the
Eclipse jar files. We're in the process of replacing this verifier with a more
robust one.

In addition, one limitation of natively compiled Eclipse deserves mention. You
can't use natively compiled Eclipse to debug a GCJ-compiled application,
because JDWP, the Java Debug Wire Protocol used by Eclipse, hasn't been
implemented in libgcj yet.

 Implications and Future Directions

The achievement of the native compilation of Eclipse is a strong indication that
open-source Java based on GCJ and libgcj/classpath has reached the point of
being commercially useful. That said, it's still not complete. Some fairly
substantial gaps still need to be filled in before open-source Java can be a
proper drop-in substitute for proprietary JVMs.

One of the major areas that needs work is the development/integration of a JIT
compiler. JIT would allow a GCJ-based open-source Java environment to be used
in a manner similar to a conventional JVM, meaning that native compilation and
platform-specific binaries would not be necessary for performance reasons.

The other major piece that needs work also is, by far, the most visible missing
piece—Swing. Work on an open-source implementation of Swing is coming
along nicely as part of the GNU Classpath Project, but Swing is a huge
undertaking and the GNU Classpath implementation is still not quite usable.

A full-featured and completely open-source Java environment is an attractive
alternative to proprietary JVMs, and it's now within reach. During the past six

months, Red Hat has more than doubled the number of engineers working in
support of the Open Source Java solution and community. Eclipse is a large,
complicated piece of software, and natively compiling and running it was an
excellent test of and testament to the progress being made on open-source
Java. The power of open source lies in its communities, so please consider
joining the open-source Java community and contributing to the GCJ and GNU
Classpath Projects in any way that interests you.

Resources for this article: /article/7549.

John Healy is the manager of Red Hat's Eclipse Engineering group, based in
Toronto (people.redhat.com/jhealy). In the past he's worked on custom open-
source toolchains for embedded processors as well as CRM and computer-
telephony applications.

Andrew Haley has been a programmer for longer than he cares to remember.
He is one of the maintainers of GCJ. He works for Red Hat, which supports him
in this task.

Tom Tromey has worked on free software since the early 1990s. Patches of his
appear in GCC, Emacs, GNOME, Autoconf, GDB and probably other packages he
has forgotten about. He works at Red Hat as the technical lead of the Eclipse
Engineering team. He can be reached at tromey@redhat.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/123/7549.html
http://people.redhat.com/jhealy
mailto:tromey@redhat.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/toc123.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Clusters for Nothing and Nodes for Free

Alexander Perry

Hoke Trammell

David Haynes

Issue #123, July 2004

When the users are away, your company's legacy desktop systems can become
a powerful temporary Linux cluster.

At Quantum Magnetics we do contract R&D. We often need to design silicon
chips, simulate electromagnetic systems and analyze masses of data from field
tests. When a single set of regression tests started taking longer than a working
day to perform, coauthor Alex Perry found himself wondering how to get short-
term access to a cluster. We describe here the sequence of steps that enabled
us to set up an OpenMosix cluster with little effort and without having to
purchase anything.

Each productivity increase justified putting time into the next step of bringing
up the company-wide cluster. We omit details here that are provided in the
instructions and FAQs for each project (see the on-line Resources section),
partly because things will have changed by the time the article goes to print and
partly for brevity.

 Choose an Application

The simplest applications to run on a cluster are command-line based and run
as multiple instances on one computer. Applications don't have to be written
specifically for Linux, because they could use WINE or another portability layer.
If multiple instances are not possible, much more time has to be put into
providing a virtual machine abstraction layer. It is worth checking your specific
application before putting any effort into building a cluster to see whether it is
capable of benefitting from an OpenMosix-based cluster.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Most of our logic code is written in Verilog partly because, as the joke goes, we
can't type fast enough to use VHDL. Mainly, though, our reason is that a
broader range of tools is available in Verilog. We use several closed-source
place-and-route tools under Microsoft Windows, the runtime of which is tiny, so
putting these on the cluster is not worth the effort. For simulation, we have
both open- and closed-source options. It is convenient to use the graphical
tools (all closed-source, unfortunately) that have IDE source-level debuggers
when trying to track down a bug, but these either don't like clusters or have a
hefty licensing price tag when running on a cluster. We use Icarus Verilog for
non-interactive simulations, as regression testing is more than 99% of the total
simulation workload. We like it because multiple simulators can run in parallel;
each simulator is a single Linux process; the tool has its own public regression
suite; the developers are helpful and responsive; and the syntax parser is
paranoid and accurate.

The paranoia of the syntax parser flags a lot of problems for us. Many parsers
simply select one interpretation of ambiguously written source, leading to
incorrect behaviour that is effectively a bug. In contrast, Icarus immediately
complains about ambiguities, and after we've made the tiny rewrite, the
synthesized chip suddenly starts working the way that it was intended.

The developers for Icarus, by responding rapidly to bug reports and patches,
enhance the value of the simulator in our work. We update from CVS to benefit
from those almost-immediate source changes. In addition, it is much easier to
standardize one virtual machine (the cluster) than to manage the versions on
the individual workstations.

We run all our proprietary simulation tests immediately before and after a new
version of Icarus is retrieved from CVS. About once a year, the simulation
results are different, so we submit a bug report that localizes the problem to a
test case outside our proprietary work. In this way, all our proprietary work acts
as an additional regression suite for the Icarus Project without us having to
make it available to our competitors. It also ensures that any official release of
Icarus is useful to us.

Listing 1. Extract from a chip design project Makefile showing how regression

happens. The %.txt reference data is generated automatically using C and AWK.

TESTS = test1 test2 test3 test4
.PHONY:default
default: $(TESTS:%=%.log)
 -hostname -f
 -cat $(TESTS:%=%.log)

%: %.vl
 iverilog -o$* $<
%.vl: %.v
 ./Makefile.sh $^ > $@

test1.vl: source5.v source7.v

%.log: Makefile %.txt %.out
 ls --full-time $*.out > $@
 diff -b -C2 $*.txt $*.out >> $@
 echo "... PASS ..." >> $@

.PRECIOUS: %.out %.txt
%.out: %
 time ./$* > $@
.PHONY: %.batch batch
%.batch: %
 echo "make $*.log" | batch -m
batch%: $(TESTS)
 echo "make -l $*.5" | batch -m

The shell script Makefile.sh ensures that Icarus and the Makefile always agree
on what source files are being used to build the simulation:

#! /bin/bash
echo -n "// "; date
for item in $*; do
 echo "\`include \"$item\""; done

In our engineering design work, we use make, as shown in Listing 1, to
automate test execution and to manage all the Verilog source files, the
reference implementation in C, validated test data, the pool of regression tests
and all the simulation results.

Without the cluster, between six and ten hours were needed to complete all the
dependencies that resulted from a minor change to a source file. Logic
simulation usually is about a factor of a million slower than real life, so the
regression simulates only about 20 milliseconds of time. The tests have to be
selected carefully, because the board can run for as long as 30 seconds per use
(about a year of simulation).

 Protect History

The most valuable part of the work is the data and all the intermediate states of
the work in progress, because any damage here sets you back days even if you
have backups and external version control checkpoints. A RAID array of 1 or 5 is
the usual protection. One computer, not one of the fastest ones, should have at
least two hard drives on distinct controllers. It is worth making sure that each
drive has a small swap partition so the kernel can use all the swaps and do
some load balancing.

Turn on the kernel-space NFS server and configure /etc/exports from the point
of view of securing the data storage from damage. When the NFS is under
heavy load, user-space programs have to be swapped to make space for
additional disk cache. Consider having a runlevel that could be deferred to
disable all the services that wake up periodically for minor purposes.

We're using an existing dual-Athlon MP machine with over a terabyte of storage
and running Debian stable as our NFS server. The system is overkill for the
cluster; we originally built it to archive field test data and then stream the data
to multiple clients for analysis. No X server is used, because the cooling fans
make so much noise that nobody wants the machine sitting next to his or her
desk.

 Without a Cluster

Using make batch2 on a dual-processor machine reduced our runtime by
about 40%, with one of the processors being idle near the end of the run. The
total runtime was between four and six hours of clock time. This can be
improved, even without a cluster, by distributing the work across many
machines using OpenSSH with public key authentication. The Linux Journal
article (“Eleven SSH Tricks” by Daniel R. Allen, August 2003) explained how to
configure this powerful package to avoid endless streams of password prompts
while simultaneously enhancing network security.

Listing 2. This runs simulations in parallel on many computers. The runtime is

consistent but can be inefficient.

#! /bin/bash
for pair in host1/test1 host2/test2 \
 host2/test3 host5/test4
do test=`basename $pair`
 make $test
 ssh `dirname $pair` vvpstdin \
 < $test > $test.out &
done
wait; make

The Icarus simulation engine vvp cannot load from standard input, so we use
this vvpstdin script:

#! /bin/bash
F=/tmp/`basename $0`.tmp.$$
cat > $F
/usr/local/bin/vvp $F
exec rm $F

The machines sharing the work usually come to have different performance
capabilities. It is important to match the relative runtimes of the various tests
against individual processor speeds, remembering SMP, so all of the tests finish
at about the same time. We found it best to optimize the mapping manually in
a script like the one shown in Listing 2.

By using SSH to two dual-Athlon MP machines, one Pentium III laptop and five
Pentium II desktops, we reduced runtime to a fairly consistent two hours.

 Initial Cluster

If everyone is running the same version of the same distribution, it probably is
sufficient to install the prepackaged binaries of OpenMosix. Thereby, you have
the workload migration available without any effort. Always use the
autoconfiguration option instead of specifying the list of nodes manually,
because the cluster grows in later stages.

We use several different distributions in the office, so we downloaded a pristine
2.4.20 kernel tarball, the matching OpenMosix patch and the source of user-
space tools to the NFS fileserver. After making careful notes of the
configuration settings to keep all the machines in step, we followed the
instructions on the OpenMosix Web site. Because it takes our time and effort to
recompile and reinstall kernels, we modified only four computers needed to
cluster seven processors. This is slightly less capable than the ten processors
achieved through SSH. Even so, the worst-case runtime stayed almost identical,
because the migration did the load balancing slightly better than our hand-
optimized script could achieve. Because Alex could use make -j and let
OpenMosix assign the work, all incremental workloads completed faster and
did not need the full two hours.

OpenMosix tries to be fair and have all programs run at the same speed by
putting more work on the faster computers. This is not optimal for the logic
simulation workload, however, as we usually know the relative runtimes. In this
case, a short script (not included here) helpfully monitors the contents of /proc.
The script periodically looks for process pairs with a big ratio in their expected
runtimes but whose node assignments are not providing a corresponding
execution speed ratio. The script uses its knowledge of prior runs to request a
migration to gain a long-term benefit hidden from OpenMosix. Such a script is
not needed if, for your application, the runtimes of all processes are similar.

 Those Old Machines

Usually, plenty of spare older computers can be found hiding in corners. Put an
X server on one of them that is configured to be a terminal into the xdm service
on the fast computers. With this machine, you can shut down the X servers on
the fast computers and release their processor and memory resources back
into the important workload. Alex's desktop computer, a 400MHz Pentium II,
already had its X server indirecting over xdm's chooser. David's work keeps him
roaming the building and relying on VNC, so he already was using Xvnc. Only
Hoke needed to make minor changes to configuration files.

Next, install LTSP on one computer and set up all the other old computers to
use diskless boots to become terminals too. Doing so eliminates the
administration of all those operating systems. You now should have enough

terminal stations that all your team members are using terminals, and all the
fast compute nodes can stay in the stripped runlevel and be as efficient as
possible. It doesn't take long to get those two features working, and an
excellent time to work on this is whenever you're waiting on the running jobs.

There is no need to get the DHCP and TFTP components of LTSP working. Put
the kernel on a floppy, together with SysLinux configured to trigger the non-
boot DHCP, and mount the NFS root filesystem. Then, use that one floppy to do
the one-time boot of the terminals. Reboots are needed infrequently, so the
slowness of the floppy is fine.

 Coworkers

Once the cluster and LTSP are both functional, we simply combine them. The
short script shown in Listing 3 uses the NBI tools to put the patched kernel into
/ltsp/i386/boot. Our DHCP server's filename parameter is a soft link, so we can
change the LTSP kernel rapidly while testing upgrades. After copying the user-
space tools into the client filesystem and renaming the init script as
rc.openmosix, we add the few lines in Listing 4 to the LTSP startup script.
Slower computers have MOSIX=N in the LTSP configuration file because they
would not contribute much performance to the cluster.

One line in /ltsp/i386/etc/inittab:

ca:12345:ctrlaltdel:/sbin/ctrlaltdel

calls a copy of Debian's shutdown binary using the script shown in Listing 5.
This ensures that Ctrl-Alt-Del forces a clean disconnect from the cluster before
rebooting.

Listing 3. This /ltsp/i386/usr/src/netkernels copies kernels from the build tree to

the TFTP directory.

#! /bin/bash
for vsn in 2.4.20 2.4.21
do pushd linux-$vsn; make bzImage; popd
 s=linux-$vsn/arch/i386/boot/bzImage
 d=../../boot/vmlinuznbi-$vsn
 mknbi-linux --ip=dhcp \
 --append "root=/dev/nfs" $s >$d
done

Listing 4. These few lines are appended to the LTSP startup script /ltsp/i386/etc/

rc.local.

MOSIX=`get_cfg MOSIX Y`
if ["$MOSIX" = "Y"]; then
 echo 1 > /proc/hpc/admin/lstay
 AUTODISC=1 /etc/rc.openmosix start
fi

Listing 5. New Shutdown Script

#! /bin/bash
prefix="Control Alt Del detected: "
echo "$prefix OpenMosix"
/etc/rc.openmosix stop
echo "$prefix ShutDown"
/sbin/shutdown -r -n now
echo "$prefix failed (give up)"

Once you are confident that the LTSP-OpenMosix kernel is stable and not going
to be changed, you can hand out floppies with the new kernel. The LTSP users
won't see a difference, but your compute workload will.

If you would like to maintain the option of changing the kernel without having
to hunt around the company to find all the old floppies, now is a good time to
get the DHCP network boot working. The LTSP documentation describes how to
configure Linux or UNIX servers, but our implementation was running on
Microsoft Windows. David, who administers our Windows-based DNS and
DHCP servers, set up Netboot in DHCP (Figure 1).

https://secure2.linuxjournal.com/ljarchive/LJ/123/7185f1.large.jpg

Figure 1. The three scope entries needed on a Windows DHCP server. Notice that the root
path has the trailing slash workaround.

Microsoft DHCP appends a null to the NFSROOT, as discussed in LTSP mailing
lists, so you need a soft link:

ln -s /ltsp/i386 /ltsp/i386/000

Listing 6. This /ltsp/i386/usr/src/bootfloppy makes a floppy network boot for

several models of network card.

#! /bin/bash
if test "$EUID" != "0"; then exec sudo $0; fi

Configuration options
L="eepro100 rtl8029 rtl8139 tulip 3c905c-tpo"
E=etherboot-5.0.10/src
item=3c905c-t

F=${0}.img
M=$F.mnt
C=$M/syslinux.cfg
CC=$M/toc.txt

Create the virtual bootable floppy disk
dd if=/dev/zero of=$F bs=1024 count=1440

https://secure2.linuxjournal.com/ljarchive/LJ/123/7185f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7185f1.large.jpg

mkdir -p $M; mkdosfs $F; syslinux $F
mount -t vfat -o loop $F $M

Populate the floppy with configuration files
cat <<END >$CC
This floppy image is at http://ltsp$F
The bootloaders are built using $E
If you don't have a $item, you need to type
in the card name below. If your network card is
not listed, please notify $USER@qm.com To change the
default permanently, you need to edit the
file `basename $C`
END

cat <<END > $C
display `basename $CC`
prompt 1
timeout 100
default $item
END

Now add the bootable images
for item in $L
do T=bin32/$item.lzlilo

pushd $E; make $T; popd
item=${item:0:8}
cp $E/$T $M/$item
echo >>$CC " $item"

done
flip -m $C
flip -m $CC

Release the floppy disk
df $M; umount $M; rmdir $M

For years, our LTSP deployment has been providing multiple X stations to
various engineering computers, and we never needed a central application
server. The script shown in Listing 6 builds a floppy image for use with all
computers. The user simply specifies the network card model.

With this infrastructure, any cluster user can stroll through the buildings with
one of those floppies and reboot idle machines into the cluster until sufficient
resources are available to run workloads efficiently. For logic simulation, Alex
simply adds machines until there are more fast computers in the cluster than
slow tests in the suite, so the regression never takes longer than 16 minutes.
With that efficiency boost, he rapidly finished the design. Without running
mtop, you'd never notice OpenMosix migrating compute-bound processes into
the cluster. Meanwhile, others are using the network for different projects.

 Large Off-Peak Cluster

Quantum Magnetics has about 100 employees, so our cluster is limited to
around 100 nodes, as a few people have more than one computer. We're
setting things up so that machines spend nights in the cluster and days as
normal user workstations. They reboot at least twice every day and check a
configuration directory to decide whether to boot from the network or from the
hard drive.

The BIOS must be configured to try the PXE boot before the hard drive. The
DHCP servers distinguish between EtherBoot and PXE boot requests, with the
latter receiving the boot filename for PXELINUX. There are two directories of
configuration files, one for day and one for evening, and a small cron job to
switch between them. The daytime boot chains to the master boot record on
the hard drive, and the evening boot chains to the PXE version of EtherBoot.

The LTSP configuration file indicates which machines have to reboot on
weekday mornings and causes the ctrlaltdel script to run. If a user comes to
work early, simply pressing Ctrl-Alt-Del brings the machine back into daytime
mode as soon as possible.

Remote Windows administration is used to force workstations to log off after
inactivity in the evening and then reboot once. If either of the two network boot
stages fail, the machine starts Windows and does not join the cluster.

 Long-Term Use

Once your on-demand cluster is running smoothly, resist the temptation to
increase it by purchasing a lot of desktop computers you don't otherwise need.
The use of LTSP with desktop computers is cost effective only because you
already paid for them. There is no financial outlay to acquire them, install them
or maintain them when any of their components fail. Dedicated multiprocessor
rackmount computers are easily the cheapest way to add processing power to
a cluster. By omitting the unnecessary peripherals, they also save money,
power, cooling and some failures.

OpenMosix or Mosix offer a quick and easy way to get cluster benefits, but the
kernel is making migration decisions in real time. It is inherently less efficient
than using explicit workload management with processes dedicated to
individual nodes and communicating using MPI. Because you can support both
Mosix and MPI within the same cluster, you may want to add job control and
MPI libraries to the LTSP client filesystem. Applications that are cluster-aware
take advantage of MPI and achieve the ultimate performance available. The
other applications always gain partial benefits from Mosix.

On a dual-MPI/Mosix cluster, users have the incentive to migrate to MPI
applications. The load balancing algorithms of Mosix always give priority to a
local MPI process over a migrated Mosix process, so cluster-unaware
applications run more slowly. We haven't started using MPI yet, because none
of our critical engineering applications would benefit from it enough to justify
the effort needed to establish it.

 Further Logic Plans

Our next step in supporting QM's logic simulation needs is to use co-simulation,
in which a regression test runs in real time on programmable logic chips. The
testing speed is impressive too, because it eliminates the factor of a million
speed ratio of simulation. Allowing for the co-simulation support logic, which
also has to be placed in the programmable chip, about 10% of the logic can be
tested at once. Therefore, each chip can execute tests as fast as a 50,000-node
cluster.

No changes to the Linux and cluster configuration are necessary, but open-
source tools are critical to keeping the process simple. Every test has to be
processed by the place-and-route tools before execution, the test benches have
to be written in a special way and a new level of data organization tracks all
work in progress.

 Conclusion

LTSP runs well within a Windows network and makes it easy to deploy software
temporarily across the whole company without modifying the hard drives.
Deploying Icarus on the OpenMosix cluster saved months of development time
and ensured a more reliable product. The flexibility of open-source
components increased our productivity, and the availability of our cluster
enhances our corporate capabilities.

Resources for this article: /article/7553.

Dr Alexander Perry (alex.perry@qm.com) is principal engineer at Quantum
Magnetics in San Diego, California.

Hoke Trammell (hoke.trammell@qm.com) is a staff scientist for Electromagnetic
Sensing at Quantum Magnetics.

David Haynes (david.haynes@qm.com) is corporate Network Administrator at
Quantum Magnetics.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/123/7553.html
mailto:alex.perry@qm.com
mailto:hoke.trammell@qm.com
mailto:david.haynes@qm.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/toc123.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 uClinux for Linux Programmers

David McCullough

Issue #123, July 2004

Adapt your software to run on processors without memory management—it's
easier than you think.

uClinux has seen a huge increase in popularity and is appearing in more
commodity devices than ever before. Its use in routers (Figure 1), Web cameras
and even DVD players is testimony to its versatility. The explosion of low-cost,
32-bit CPUs capable of running uClinux is providing even more options to
manufacturers considering uClinux. Now with uClinux's debut as part of the 2.6
kernel, it is set to become even more popular.

Figure 1. The SnapGear LITE2 VPN/Router runs uClinux.

With more embedded developers facing the possibility of working with uClinux,
a guide to its differences from Linux and its traps and pitfalls is an invaluable
tool. Here we discuss the changes a developer might encounter when using
uClinux and how the environment steers the development process.

 No Memory Management

The defining and most prevalent difference between uClinux and other Linux
systems is the lack of memory management. Under Linux, memory
management is achieved through the use of virtual memory (VM). uClinux was
created for systems that do not support VM. As VM usually is implemented
using a processing unit called an MMU (memory management unit), you often
hear the term NOMMU when traveling in uClinux circles.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

With VM, all processes run at the same address, albeit a virtual one, and the VM
system takes care of what physical memory is mapped to these locations. So
even though the virtual memory the process sees is contiguous, the physical
memory it occupies can be scattered around. Some of it even may be on a hard
disk in swap. Because arbitrarily located memory can be mapped to anywhere
in the process' address space, it is possible to add memory to an already
running process.

Without VM, each process must be located at a place in memory where it can
be run. In the simplest case, this area of memory must be contiguous.
Generally, it cannot be expanded as there may be other processes above and
below it. This means that a process in uClinux cannot increase the size of its
available memory at runtime as a traditional Linux process would.

Although all programs need to be relocated at run time so that they can
execute, it is a fairly transparent task for the developer. It is the direct effect of
no VM that is the thorn in every uClinux developer's side. The net effect is that
no memory protection of any kind is offered—it is possible for any application
or the kernel to corrupt any part of the system. Some CPU architectures allow
certain I/O areas, instructions and memory regions to be protected from user
programs but that is not guaranteed. Even worse than the corruption that
crashes a system is the corruption that goes unnoticed, and tracking down
random interprocess corruption can be extremely difficult.

Without VM, swap is effectively impossible, although this limitation is rarely an
issue on the kinds of systems that run uClinux. They often do not have hard
drives or enough memory to make swap worthwhile.

 Kernel Differences

To a kernel developer, uClinux offers little in the way of differences from Linux.
The only real issue is that you cannot take advantage of the paging support
provided by an MMU. In practice, this doesn't affect much of the kernel. tmpfs,
for example, does not work on uClinux because it relies on the VM system.

Similarly, all of the standard executable formats are unsupported, because they
make use of VM features that do not exist under uClinux. Instead, a new format
is required, the flat format. Flat format is a condensed executable format that
stores only executable code and data, along with the relocations needed to
load the executable into any location in memory.

Device drivers often need some work when you move to uClinux, not because
of differences in the kernels, but due to the kinds of devices the kernel needs to
support. For example, the SMC network driver supports ISA SMC cards. They
usually are 16-bit and are located at I/O addresses below 0x3ff. The same driver

easily can be made to support the non-ISA embedded versions of the chip, but
it may need to run in 8-, 16- or 32-bit mode, at an I/O address that is a full 32-
bit address and at an interrupt number quite often higher than ISA's maximum
of 16. So despite the fact that the bulk of the driver is the same, the hardware
specifics can require a little porting effort. Quite often, older drivers store I/O
addresses in short format, which does not work on an embedded uClinux
platform with devices appearing at memory-mapped I/O addresses.

The implementation of mmap within the kernel is also quite different. Though
often transparent to the developer, it needs to be understood so it is not used
in ways that are particularly inefficient on uClinux systems. Unless the uClinux
mmap can point directly to the file within the filesystem, thereby guaranteeing
that it is sequential and contiguous, it must allocate memory and copy the data
into the allocated memory. The ingredients for efficient mmap usage under
uClinux are quite specific. First, the only filesystem that currently guarantees
that files are stored contiguously is romfs. So one must use romfs to avoid the
allocation. Second, only read-only mappings can be shared, which means a
mapping must be read-only in order to avoid the allocation of memory. The
developer under uClinux cannot take advantage of copy-on-write features for
this reason. The kernel also must consider the filesystem to be “in ROM”, which
means a nominally read-only area within the CPU's address space. This is
possible if the filesystem is present somewhere in RAM or ROM, both of which
are addressable directly by the CPU. One cannot have a zero allocation mmap if
the filesystem is on a hard disk, even if it is a romfs filesystem, as the contents
are not directly addressable by the CPU.

 Memory Allocation (Kernel and Application)

uClinux offers a choice of two kernel memory allocators. At first it may not
seem obvious why an alternative kernel memory allocator is needed, but in
small uClinux systems the difference is painfully apparent. The default kernel
allocator under Linux uses a power-of-two allocation method. This helps it
operate faster and quickly find memory areas of the correct size to satisfy
allocation requests. Unfortunately, under uClinux, applications must be loaded
into memory that is set aside by this allocator. To understand the ramifications
of this, especially for large allocations, consider that an application requiring a
33KB allocation in order to be loaded actually allocates to the next power of
two, which is 64KB. The 31KB of extra space allocated cannot be utilized
effectively. This order of memory wastage is unacceptable on most uClinux
systems. To combat this problem, an alternative memory allocator has been
created for the uClinux kernels. It commonly is known as either page_alloc2 or
kmalloc2, depending on the kernel version.

page_alloc2 addresses the power-of-two allocation wastage by using a power-
of-two allocator for allocations up to one page in size (a page is 4,096 bytes, or

4KB). It then allocates memory rounded up to the nearest page. For the
previous example, an application of 33KB actually has 36KB allocated to it; a
savings of 28KB for a 33KB application is possible.

page_alloc2 also takes steps to avoid fragmenting memory. It allocates all
amounts of two pages (8KB) or less from the start of memory up and all larger
amounts from the end of free memory down. This stops transient allocations
for network buffers and so on, fragmenting memory and preventing large
applications from running. For a more detailed example of memory
fragmentation, see the example in the Applications and Processes section
below. page_alloc2 is not perfect, but it works well in practice, as the embedded
environments that run uClinux tend to have a relatively static group of long-
lived applications.

Once the developer gets past the kernel memory allocation differences, the real
changes appear in the application space. This is where the full impact of
uClinux's lack of VM is realized. The first major difference most likely to cause
an application to fail under uClinux is the lack of a dynamic stack. On VM Linux,
whenever an application tries to write off the top of the stack, an exception is
flagged and some more memory is mapped in at the top of the stack to allow
the stack to grow. Under uClinux, no such luxury is available as the stack must
be allocated at compile time. This means that the developer, who previously
was oblivious to stack usage within the application, must now be aware of the
stack requirements. The first thing a developer should consider when faced
with strange crashes or behavior of a newly ported application is the allocated
stack size. By default, the uClinux toolchains allocate 4KB for the stack, which is
close to nothing for modern applications. The developer should try increasing
the stack size with one of the following methods:

1. Add FLTFLAGS = -s <stacksize> and export FLTFLAGS to the
Makefile for the application before building.

2. Run flthdr -s <stacksize> executable after the application
has been built.

The second major difference that strikes a uClinux developer is the lack of a
dynamic heap, the area used to satisfy memory allocations with malloc and
related functions in C. On Linux with VM, an application can increase its process
size, allowing it to have a dynamic heap. This traditionally is implemented at the
low level using the sbrk/brk system calls, which increase/change the size of a
process' address space. The heap's management by library functions such as
malloc then is performed on the extra memory obtained by calling sbrk() on
behalf of the application. If an application needs more memory at any point, it
can get more simply by calling sbrk() again; it also can decrease memory using
brk(). sbrk() works by adding more memory to the end of a process (increasing

its size). brk() arbitrarily can set the end of the process to be closer to the start
of the process (reduce the process size) or further away (increase the process
size).

Because uClinux cannot implement the functionality of brk and sbrk, it instead
implements a global memory pool that basically is the kernel's free memory
pool. There are pitfalls with this method. For example, a runaway process can
use all of the system's available memory. Allocating from the system pool is not
compatible with sbrk and brk, as they require memory to be added to the end
of a process' address space. Thus, a normal malloc implementation is no good,
and a new implementation is needed.

A global pool approach has some advantages. First, only the amount of
memory actually required is used, unlike the pre-allocated heap system that
some embedded systems use. This is extremely important on uClinux systems,
which generally are running with little memory. Another advantage is that
memory can be returned to the global pool as soon as it is finished being used,
and the implementation can take advantage of the existing in-kernel allocator
for managing this memory, reducing the size of application code.

One of the common problems new users encounter is the missing memory
problem. The system is showing a large amount of free memory, but an
application cannot allocate a buffer of size X. The problem here is memory
fragmentation, and all of the uClinux solutions available at this time suffer from
it. Because of the lack of VM in the uClinux environment, it is nearly impossible
to utilize memory fully due to fragmentation. This is best explained by example.
Suppose a system has 500KB of free memory and one wishes to allocate 100KB
to load an application. It is easy to think that this would be possible. However, it
is important to remember that one must have a contiguous 100KB block of
memory in order to satisfy the allocation. Suppose the memory map looks like
this. Each character represents approximately 20KB, and X marks areas
allocated or in use by other programs or by the kernel:

 0 100 200 300 400 500 600 700 800 900 1000
 -+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+--
 |XXXXX|XXXXX|---XX|--X--|-X---|XX---|-X---|-XX--|-X---|XXXXX|

In this case, 500KB are free, but the largest contiguous block is only 80KB.
There are many ways to arrive at such a situation. A program that allocates
some memory and then frees most of it, leaving a small allocation in the middle
of a larger free block, often is the cause. Transient programs under uClinux also
can affect where and how memory is allocated. The uClinux page_alloc2 kernel
allocator has a configuration option that can help identify this problem. It
enables a new /proc entry, /proc/mem_map, that shows pages and their

allocation grouping. Documenting this is beyond the scope of this article, but
more information can be found in the kernel source for page_alloc2.c.

The question is often asked, why can't this memory be defragmented so it is
possible to load a 100KB application? The problem is that we don't have VM
and we cannot move memory being used by programs. Programs usually have
references to addresses within the allocated memory regions, and without VM
to make the memory always appear to be at the correct address, the program
will crash if we move its memory. There is no solution to this problem under
uClinux. The developer needs to be aware of the problem and, where possible,
try to utilize smaller allocation blocks.

 Applications and Processes

Another difference between VM Linux and uClinux is the lack of the fork()
system call. This can require quite a lot of work on the developer's part when
porting applications that use fork(). The only option under uClinux is to use
vfork(). Although vfork() shares many properties with fork(), the differences are
what matter the most.

fork() and vfork(), for those unfamiliar with these system calls, allow a process
to split into two processes, a parent and a child. A process can split many times
to create multiple children. When a process calls fork(), the child is a duplicate
of the parent in all ways, but it shares nothing with the parent and can operate
independently, as can the parent. With vfork() this is not the case. First, the
parent is suspended and cannot continue executing until the child exits or calls
exec(), the system call used to start a new application. The child, directly after
returning from vfork(), is running on the parent's stack and is using the parent's
memory and data. This means the child can corrupt the data structures or the
stack in the parent, resulting in failure. This is avoided by ensuring that the
child never returns from the current stack frame once vfork() has been called
and that it calls _exit when finishing—exit cannot be called as it changes data
structures in the parent. The child also must avoid changing any information in
global data structures or variables, as such changes may break the execution of
the parent.

Making an application use vfork instead of fork usually falls into the absolutely
simple or incredibly difficult category. Generally, if the application does not fork
and then exec() almost immediately, it needs to be checked carefully before
fork() can be replaced with vfork().

The uClinux flat executable format, though it doesn't directly affect applications
and their operations, does allow quite a few options that the usual ELF
executables under Linux do not. Flat format executables come in two basic
flavors, fully relocated and a variation of position-independent code (PIC). The

fully relocated version has relocations for its code and data, while the PIC
version generally needs only a few relocations for its data.

One of the most advantageous features to the embedded developer is execute-
in-place (XIP). This is where the application executes directly from Flash or ROM,
requiring the absolute minimum of memory, because only the memory for the
data of the application is needed. This allows the text or code portion to be
shared between multiple instances of the application. Not all uClinux platforms
are capable of XIP, as it requires compiler support and the PIC form of the flat
executable. So unless the toolchain for a given platform can do PIC, it cannot do
XIP. Currently, only the m68k and ARM toolchains provide the required level of
support for flat format XIP. romfs is the only filesystem to support XIP under
uClinux, because the application must be stored contiguously within the
filesystem for XIP to be possible.

The flat format also defines the stack size for an application as a field in the flat
header. To increase the stack allocated to an application, a simple change of
this field is all that is required. This can be done with the flthdr command, like
this:

flthdr -s flat-executable

The flat format also allows two compression options. The entire executable can
be compressed, providing maximum ROM savings. It also offers the often
useful side effect that the application is loaded entirely into a contiguous RAM
block. You also may choose data-segment-only compression. This is important
if you want to save ROM space but still want the option to utilize XIP. The
following:

flthdr -z flat-executable

creates a fully compressed executable, and

flthdr -d flat-executable

compresses only the data segment.

 Shared Libraries

Although a complete discussion of shared libraries is beyond the scope of this
article, they are quite different under uClinux. The currently available solutions
require compiler changes and care on the part of the developer. The best way
to create shared libraries is to start with an example. The current uClinux
distributions provide shared libraries for both the uC-libc and uClibc libraries.

The method for creating a shared library isn't difficult, and both of these
libraries provide a good, clean example of how it is done. To set expectations
appropriately, the GCC -shared option is not part of the shared library creation
process, so do not expect it to be familiar. Shared libraries under uClinux are
flat format executables, just like applications, and to be truly shared must be
compiled for XIP. Without XIP, shared libraries result in a full copy of the library
for each application using it, which is worse than statically linking your
applications.

 Summary

The step into uClinux from Linux often is more than the differences between
uClinux and Linux. uClinux systems tend to be more deeply embedded
systems, with smaller memories and ROM footprints and an unusual array of
devices. The loss of a hard drive and the tight resource limits, coupled with no
memory protection and a number of other subtle differences can make a
developer's first adventure into uClinux more difficult than imagined. The best
way to get started is to look at the uClinux Emulators (Figure 2) and cheap
hardware (Figure 3) options available.

Figure 2. uClinux Running under Xcopilot (Palm Emulator)

https://secure2.linuxjournal.com/ljarchive/LJ/123/7221f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7221f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7221f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7221f3.large.jpg

Figure 3. uClinux Running on a Real Palm IIIx (with Microwindows)

Hopefully, highlighting these issues will help the wary developer be prepared
beforehand and avoid some of the common pitfalls and misconceptions of
working with uClinux.

Resources for this article: /article/7546.

David McCullough is a senior software engineer and a veteran embedded
software developer. Prior to working at SnapGear and Lineo, he held software
development and engineering management positions at Stallion Technologies
and was involved in the development of products based on SCO and BSD UNIX.
David ported and maintained XFree86 on SCO UNIX for several years and
recently was instrumental in the development of the uClinux port of Linux 2.6.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/123/7221f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7221f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7546.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/toc123.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 At the Forge

Slash

Reuven M. Lerner

Issue #123, July 2004

One of the oldest and most full-featured Web community systems is also
among the hardest to install. Reuven gets you started as a Slash Webmaster
with advice on mod_perl and other prerequisites.

The popularity of Weblogs, also known as blogs, has been growing for several
years and shows no signs of letting up. Although many Webloggers continue to
record their thoughts using third-party services, such as LiveJournal and
Blogger, running a Weblog on your own server is becoming easier to do. Over
the last few months, we have looked at several different packages that provide
this functionality, including COREBlog, a Zope product, and Blosxom, a set of
CGI programs written in Perl.

Last month, we looked at a slightly different type of system for Weblogs when
we examined XOOPS. XOOPS, like its cousins PHPNuke and PostNuke, allows
users to create content management and on-line communities as well as
administer users and groups. XOOPS makes it easy to give each user on a
system his or her own personal Weblog.

As popular as XOOPS may be, the undisputed granddaddy of community
software is Slash, which powers the popular Slashdot.org and use.perl.org Web
sites. Slash primarily is used to disseminate news articles and comments, but it
has a powerful Weblog feature that is available to every user on the system.
Some would argue that Slashdot itself is a community-authored Weblog, an
argument I also find somewhat convincing. Best of all, this Weblog feature is
combined into other elements of the site. Thus, when you see a particularly
insightful or insipid comment from another user, you immediately can view
that user's journal to learn more.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

This month, we look at the installation and configuration of a simple Slash site,
with built-in support for users and Weblogs, or journals, as they are called in
Slash lingo. Next month, we will take a closer look at the Weblog functionality
available on Slash, as well as how to configure and change it to suit our
particular needs.

 Infrastructure

The main distribution and discussion site for Slash is Slashcode. As I write this
in early April 2004, the most recent posting is titled, “Making Slash Install
Friendly”, in which the author asks if there are clear and simple directions for
installing Slash. Unfortunately, the answer appears to be no. This is the case for
several reasons:

• The Slash documentation and instructions point most people to the
officially released .tar.gz packages, and these packages are more than two
years out of date.

• The latest CVS version is freely available and up to date but potentially
unstable, unless you know which tagged version to grab.

• The installation is a fairly manual process, with room for error at several
critical points.

• The documentation for Slash is somewhat lacking in quality.
• Even if you get a recent, working copy of the code installed, full Slash

installation requires installing mod_perl, Template Toolkit, MySQL and a
number of other Perl modules and standalone tools, each having its own
slightly odd and nonstandard options.

If you are an expert with mod_perl, MySQL and Apache, installing Slash is a
slightly annoying but doable process. If you are less than an expert, the results
probably are worthwhile, but you should expect to learn quite a bit about each
of these technologies along the way. You may find yourself turning to the IRC
channel and Web site for support and ideas.

The first step in installing Slash is to install Apache, mod_perl and MySQL. Any
modern version of MySQL works fine; the real problems are with Apache and
mod_perl, which can be tricky for first-timers to install. Luckily, this part of the
installation process has not changed significantly over the years, meaning that
you can follow the MySQL, Apache and mod_perl installation instructions at the
InstallSlash site (see the on-line Resources section). If neither Perl nor expat are
installed on your system, you should follow the InstallSlash instructions for
those as well. Remember that on Red Hat and Fedora systems, you need to
install not only the expat RPM but the expat-devel RPM too. You also need to
define a MySQL database into which site information can be stored; by default,
this is called slashdb.

A major source of trouble when compiling Apache and mod_perl is the need to
define EVERYTHING=1. This activates all of mod_perl's hooks, allowing mod_perl
to override all of Apache's default behavior, including authentication,
authorization, URL rewriting and logging. Without defining EVERYTHING=1,
mod_perl can generate only content. If your system came with mod_perl
installed, it probably was not compiled with EVERYTHING=1 defined, meaning
that you need to compile it again by yourself.

The Slash instructions also advise system administrators to set
PERL_MARK_WHERE=1 when compiling, although the mod_perl code and
documentation indicate this directive removes most undefined value warnings
from the error log. I ignored this suggestion and used Slash on my existing
mod_perl installation, and I did not notice any ill effects.

Finally, you should install the Bundle::Slash package from CPAN (a worldwide
network of servers containing freely available Perl modules and
documentation) on your system, using the automatic CPAN tools. Actually,
Bundle::Slash does not contain any code; it lists the modules you need in order
to run Slash. In this way, it saves you from having to remember (and type in) all
of the Slash-related modules that must be installed. You can install these
modules while logged in as root by typing:

perl -MCPAN -e 'install Bundle::Slash'

If you never have used CPAN before, you will be asked to define a number of
CPAN-related parameters, including the closest CPAN archive from which you
can retrieve modules. This can be a bit tricky the first time, although you
probably can accept the defaults without suffering any consequences.

One complicated part about installing these CPAN modules is DBIx::Password,
which asks for some site-specific information when it is installed. The
InstallSlash directions indicate what you should type in response to the
prompts. If you decide to change values for reasons of security or personal
taste, be sure to remember what names you used.

The most difficult part of the Bundle::Slash download is the Template Toolkit
installation. Template Toolkit is a popular and powerful templating system for
mod_perl, and it is used to display the various pages within a Slash site in a
consistent and efficient manner.

 Retrieving a Tagged Version from CVS

At this point, you need to download and install the Slash code itself. The
InstallSlash instructions walk you through the download and installation
process for the latest packaged version (2.2.6), which is on SourceForge.

However, as I indicated above, a great deal of development has happened in
the two years since 2.2.6 was released, and those improvements are available
only in the CVS version. You can retrieve the latest version from CVS and save it
in a directory named slash with the following command:

cvs -z3 -d:pserver:anonymous@cvs.sourceforge.net:
↪/cvsroot/slashcode co -r T_2_3_0_148 slash

At the same time, checking out the latest CVS version from SourceForge has its
own pitfalls, because you run the risk of installing code recently checked in but
not tested. The best solution is to use a tagged version. As experienced CVS
developers know, each file in CVS has its own revision number, such as 1.5 or
2.8 or 3.1.1.2. These revision numbers reflect the revision of the individual file
and have nothing to do with the overall project. Thus, although a software
project might be released to the public as version 2.0, the individual files almost
certainly do not have revision numbers of 2.0. To assign a collective name (or
number) to the current state of all files in a project, you must use tags,
sometimes known as symbolic revisions. Assuming that you have write
privileges, you can tag all of the files in the current directory release-2-0 with
the following:

cvs tag release-2-0

Tags cannot contain certain characters, including periods and commas. This is
why we needed to use a hyphen rather than a period to indicate release 2.0 of
our software. This raises the question of which tag you can or should retrieve.
In the case of Slash, the code is moving slowly toward the 2.3.0 release, and the
developers have standardized on tags that look like T_2_3_0_XXX, where T
stands for tested and XXX is incremented with each new tag. As of this writing,
the latest tag is T_2_3_0_148; it can be retrieved with:

cvs -z3 -d:pserver:anonymous@cvs.sourceforge.net:
↪/cvsroot/slashcode co -r T_2_3_0_148 slash

This command creates a directory named slash and puts all of the Slash-related
code, libraries and documentation into it. Particularly helpful is the INSTALL file,
which is an up-to-date version of the directions designed to work with the CVS
version you just checked out. I followed the directions in this file, typing make
install to install all of the Slash components. A message from the
installation procedure indicates what command to add to the end of the
Apache configuration file. This ensures that Apache includes the appropriate
Perl modules at startup, reducing mod_perl's memory footprint and execution
time significantly.

One of the nice things about Slash is that it can handle multiple sites easily
using the same code. That is, if you decide you want to have separate on-line

communities for Perl, Python, Tcl and Ruby, Slash can handle this for you. Each
community needs its own hostname, but they can be totally distinct from one
another. In other words, installing a Slash site is a separate procedure from
installing the Slash software. Once the software is installed, in /usr/local/slash
by default, you can create a new site by running:

/usr/local/slash/bin/install-slashsite -u USER

Here, USER is the same virtual user you created back when you installed
DBIx::Password. By default, this user is virtslash. install-slashsite asks several
more questions, including the administrator user name and password, and
then tells you to stop and start Apache with the apachectl program, typically
installed in /usr/local/apache/sbin. You should not use apachectl's restart
command. Especially when working with mod_perl, you should always stop
Apache, pause a few seconds to allow the processes to exit completely, and
then start it again.

When I tried to run install-slashsite, I discovered that at least one CPAN
module (LWP::Parallel::UserAgent) was missing. It did not take too long to install
it, but I was frustrated to discover that neither Bundle::Slash nor make install
noticed or fixed this.

 A Simple Slash Site

Your Slash site now is ready for use. On my machine, named chaim-weizmann
on my private home network, I was able to view my site by going to http://
chaim-weizmann.

Of course, a newly installed Slash site is not very exciting. If you log in using the
administrator user name and password you gave to install-slashsite, you are
given a number of options and menus that provide a fair amount of control
over the system. Many of the menus are hard to find, and it takes some time
before a new Slash administrator will understand where different changes are
made, either on the Web site or in the on-disk templates and programs. A good
introduction to Slash-site maintenance, slashguide.pod, is in the docs directory
that comes with the CVS version of Slash.

But, if you are at all familiar with the original Slashdot site, you should be able
to start posting stories and soliciting comments right away. While logged in as
the site administrator, click on the New link at the top of the home page. Enter
a topic, title, department, intro copy (displayed on the home page) and
extended copy (displayed on the individual story page). You even can set up a
poll or link a story to an existing poll. Once the story is approved, it is visible to
the entire world. Visitors to the site optionally can be allowed to comment and

even can act as moderators. Indeed, the community moderation and meta-
moderation of Slash stories is one of the most intriguing ideas that Slash has
brought to the table.

Figure 1. Enter the text here...

Figure 2. ...and it appears like this.

https://secure2.linuxjournal.com/ljarchive/LJ/123/7519f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7519f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7519f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7519f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7519f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7519f2.large.jpg

 Conclusion

Slash is more difficult to install than any of the other packages we have
discussed to date. This is partly due to the authors' choice of technology,
because mod_perl inherently is more difficult to install than is PHP, used by
XOOPS, or Zope. At the same time, Slash provides more community and
Weblog functions than the other packages, is known to handle a high load and
continues to be maintained at a fairly high level.

If you aren't afraid to get your hands dirty, and if you want the functionality the
Slashdot site provides, Slash may be a good choice for Weblogs written by a
community or by individuals. Next month, we will look at the personal journals
that Slash allows people to make, along with the friend system that allows
people to categorize other users on the system, creating a virtual community
that reflects the real world.

Resources for this article: /article/7545.

Reuven M. Lerner, a longtime Web/database consultant and developer, is now
a first-year graduate student in the Learning Sciences program at Northwestern
University. His Weblog is at altneuland.lerner.co.il, and you can reach him at
reuven@lerner.co.il.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/123/7545.html
http://altneuland.lerner.co.il
mailto:reuven@lerner.co.il
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/toc123.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Cooking with Linux

It's a Cross Platform, All Right!

Marcel Gagné

Issue #123, July 2004

Linux-based file managers make it easy to use files and printers on your legacy
Microsoft Windows systems.

Yes, I admit it, François. That's very funny. When I told you that this month's
theme was cross-platform development, I didn't mean platforms that make you
cross, although I can understand thinking of some OSes as cross platforms. As
amusing as those images are, I think the artwork you chose for the menus
tonight might raise a few eyebrows, despite our, shall we say, sympathetic
audience.

Speaking of which, I see that our guests have arrived. Welcome, mes amis, to
Chez Marcel, home of exceptional Linux fare, one of the world's greatest wine
cellars and the greatest customers in the world. Make yourselves comfortable.
François and I were discussing the theme of this month's issue, cross-platform
development, and my waiter was getting a little rambunctious. It almost seems
as though we should bring out a white Zinfandel for this, but luckily, we have
none in stock. François, to the cellar, immédiatement! Bring up the 1992 Napa
Valley Cabernet Sauvignon. Vite!

As many of you know, Microsoft Windows remains a part of the average
business IT department. Many of us must be able to exchange information
between Windows and Linux. For example, somehow you convinced
management to let you run Linux on your workstations instead of Windows.
Maybe you are using your own notebook. Whatever the reason, you now are
going to have to deal with the Windows workgroup or domain and the
appropriate shared files and printers. Although Jon in accounting isn't
particularly fond of his Windows XP box, many important files are shared from
that machine, files that are shared in the network neighborhood.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

You might ask yourself how easy it is to take advantage of the network
neighborhood. This is an interesting question considering how many file and
print servers out there aren't running Windows but Linux, providing the file
sharing experience through Samba. Consequently, it isn't surprising that
Samba-compatible client software tends to come as part of the standard
installation on most modern Linux distributions. What that means is you can
connect to a Windows share on the network using the smbclient program,
started with smbclient -L sedna, which would produce a report of shares
that looks something like this:

Domain=[ACCOUNTING] OS=[Windows 5.1] Server=[Windows 2000 LAN Manager]

 Sharename Type Comment
 --------- ---- -------
 SEDNA_C Disk
 IPC$ IPC Remote IPC
 Reports Disk
 Policies Disk

Assuming you had permission to view the Reports folder, you could connect to
it like this:

smbclient //sedna/reports -U winuser

In the above example, I am connecting to a Windows XP box from my Linux
workstation as user winuser. The system then asks me for a password, after
which I am taken to a Samba prompt that looks like this:

Domain=[ACCOUNTING] OS=[Windows 5.1] Server=[Windows 2000 LAN Manager]
smb: \>

From there, type help and smbclient offers up a list of all the things you can
do while connected using the commands at your disposal. A number of them
are obvious things, such as dir, copy and so on. Although all of this is good,
it's not pretty in the graphical sense and you can't use this while working in
your graphical file managers or inside OpenOffice.org's applications.

Whether you are using KDE or GNOME as your desktop environment, rest
assured that all the tools you need to join the network neighborhood are right
there at your disposal. Best of all, it's extremely easy to do. Let's start by taking
a look at Konqueror.

Open up Konqueror (either as the file manager or the browser) and type
smb:/ in the Location field.

Samba servers or Windows machines advertising network shares first appear in
the browser window under their workgroup name (for example, ACCOUNTING,
SALESGRP). Figure 1 shows a Konqueror session with a two-panel view; click

Window on the menubar and select Split View, Left/Right. In the left panel, we
have the basic network browser view with three active workgroups. In the right-
hand panel, I've clicked on the ACCOUNTING workgroup to show the
computers belonging to that group.

Figure 1. Using Konqueror to Browse Workgroups

To read, write or otherwise make use of the files shared on those computers,
double-click on the corresponding folder for that computer—François'
computer for instance. All of the available shared directories (or folders) then
are visible (Figure 2).

Figure 2. Once connected, browsing is basic file manager navigation.

From here, it's all classic drag and drop, graphical file manager browsing. By
clicking (or double-clicking, depending on the configuration), I can go inside the
cooking folder, locate the appropriate document and open it with
OpenOffice.org Writer if I choose. (Right-click on the file, select Open with and
voilà, I'm editing a document on a shared Windows resource.)

Ideally, we don't want to go through this whole navigation process each and
every time. To bring a given network share a few clicks closer, simply bookmark
the appropriate shared folder.

Over on the GNOME side of things, we have Nautilus. You should find the
process similar to what we went through with Konqueror. Start Nautilus and
type smb:/// in the Location bar. Nautilus then displays the active
workgroups on the network (Figure 3).

Figure 3. Nautilus in SMB Network Browse Mode

From there, you can double-click on one of the workgroups to select a
computer. Then, from the list of computers, double-click on your choice, and
you can browse the individual resources offered (Figure 4). Be aware that when
you move around from computer to computer like this, you occasionally may
be asked for a user name and password for that computer or even the specific
folder.

https://secure2.linuxjournal.com/ljarchive/LJ/123/7526f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7526f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7526f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7526f4.large.jpg

Figure 4. Windows and Samba shares are accessed easily.

As with the Konqueror example before this, you can save yourself a little time
by bookmarking the folder of your choice. The problem with both of the
suggestions I've made is that neither of them lets you permanently mount
network drives. Accessing a particular folder requires that you do a little
command-line work, an easy enough process but not quite the point-and-click
ease that Windows users on your network want to see. Let's have François refill
our glasses while we take a look at a way to solve this dilemma.

For a more robust and flexible means of working in and with the network
neighborhood, you simply must take a look at Smb4K, a super-classy SMB
browser tool that also is flexible and powerful. Furthermore, Smb4K makes it
possible to preview shares, mount shares locally without needing to run as
root, reconnect automatically on startup and more.

At the time of this writing, Smb4K was sitting at the 0.3.2 release, but I found it
to be a capable package and definitely worth the time it takes to investigate.
Binary packages for Debian, SuSE and Fedora are available from the site, as is
the full source. Building Smb4K from source is as easy as the classic extract and
build five-step:

tar -xzvf smb4k-0.3.2.tar.gz
cd smb4k-0.3.2
./configure --prefix=/usr
make
su -c "make install"

https://secure2.linuxjournal.com/ljarchive/LJ/123/7526f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7526f4.large.jpg

When you have installed the package, run the program by calling smb4k. As
soon as you start Smb4K, it scans the network looking for active shares. You
can fine-tune its functionality, including such options as whether you want
shares to be reconnected automatically by clicking on Settings in the menubar
and selecting Configure Smb4K. The graphical interface is intuitive and easy to
navigate, and the package as a whole is easy to use.

The display is divided into a left-hand side navigation panel where workgroups,
computers and shares can be listed and navigated. To mount a share, right-
click on it and select mount. If you would rather see what you are getting into
first, choose Preview instead.

Figure 5. Smb4K: could this be the ultimate SMB browser?

Mounted drives appear in the top right-hand window as drive icons. Double-
clicking on one of the drive icons calls Konqueror. If you run df from the
command line, you see that the drives now are mounted for your use in your
own home directory under an Smb4K directory prefix. For instance, for the
example in Figure 5, the listing looks like this:

Filesystem Size Used Avail Use% Mounted on
//SEDNA/Reports 4.0G 3.0G 1.1G 75% /home/marcel/smb4k/SEDNA/Reports
//FRANCOIS/wine 13G 8.8G 3.3G 73% /home/marcel/smb4k/FRANCOIS/wine

Now, any of my applications—whether KDE, GNOME, shell-based or anything
else—can access the shares. Being part of the neighborhood has never been
easier.

https://secure2.linuxjournal.com/ljarchive/LJ/123/7526f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7526f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7526f5.large.jpg

Mon Dieu, mes amis, closing time has come so quickly. François, would you be
so kind as to refill our guests' glasses a final time? We certainly don't want
anyone going home cross, and with the items on today's menu, the
neighborhood's doors all are open to you. Until next time, mes amis, let us all
drink to one another's health. A vï¿½re santï¿½ Bon appï¿½it!

Resources for this article: /article/7548.

Marcel Gagné (mggagne@salmar.com) lives in Mississauga, Ontario. He is the
author of Moving to Linux: Kiss the Blue Screen of Death Goodbye! (ISBN
0-321-15998-5) from Addison Wesley. His first book is the highly acclaimed
Linux System Administration: A User's Guide (ISBN 0-201-71934-7). In real life,
he is president of Salmar Consulting, Inc., a systems integration and network
consulting firm.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/123/7548.html
mailto:mggagne@salmar.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/toc123.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Paranoid Penguin

Secure Anonymous FTP with vsftpd

Mick Bauer

Issue #123, July 2004

To keep your FTP site secure, stick to anonymous access only and run an FTP
dæmon with minimal complexity.

Can you believe that in nearly four years of Paranoid Penguin columns, I've
never talked about how to configure FTP services? This month I fix that, using
my new favorite FTP server, Chris Evans' excellent vsftpd (Very Secure FTP
Dæmon). Because my space here is limited and the best use of FTP is
anonymous FTP, we focus on anonymous FTP. The FTP protocol's use of clear-
text authentication makes it a terrible choice for anything but anonymous file
transfer. But anonymous FTP is still plenty useful.

vsftpd is increasingly popular and is included with recent versions of Debian,
SuSE, Fedora, Red Hat and other Linux distributions. This inclusion probably is
because vsftpd provides a unique combination of security and convenience. It
is easy to get up and running in a hurry, without having to make ugly security-
vs.-expedience trade-offs.

Chris Evans created vsftpd with security as a central design goal, and its track
record so far is impressive. In the nearly four years it's been available, as of this
writing, vsftpd has had zero significant security vulnerabilities. Regardless of
whether that's still true by the time you read this article, it speaks to vsftpd's
excellent design philosophy, which borrows from OpenBSD's “secure by
default, extra features disabled by default, minimal complexity overall” motto.

How minimalist is vsftpd? Its entire source tree is just over 1MB in size, fully
uncompressed. The vsftpd executable itself is 80K.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Getting and Installing vsftpd

As I mentioned, vsftpd now is a standard package on many Linux distributions.
The usual advantages of binary packages apply: convenience, easy patching
and minimal impact on other system software. In Debian, SuSE, Fedora and Red
Hat, the package you need predictably is named vsftpd. It has no particularly
exotic dependencies. Most users probably will be perfectly happy with their
distribution's stock vsftpd package.

If your distribution of choice doesn't provide a binary package for vsftpd, or if
you need a later version than the one your distribution provides, compile
vsftpd from its source code tarball, which is available at vsftpd.beasts.org. The
build process is decidedly old school. If you aren't already, become root. Then,
unpack the tarball and change your working directory to its root, like this:

tar -xf vsftpd-1.2.1.tar.gz; cd vsftpd-1.2.1

Next, enter the command make without arguments. If it succeeds, there should
be a vsftp executable in the current directory. Make sure the user nobody
exists; if it doesn't, create it. vsftpd runs on this account.

Create the directory /usr/share/empty if it doesn't exist already. It should be
owned by root and be neither group- nor world-writable—it will be used as the
default vsftpd chroot jail.

Create a home directory for the anonymous FTP user. SuSE conventionally uses
/srv/ftp, and other distributions use /var/ftp, but it can be whatever you like.
Again, this directory should be owned by root and should not be writable by
anyone else.

Create an anonymous FTP user account, such as ftp, and make sure its home
directory is set to the one you created in the previous step. Your system already
may have such an account. The anonymous ftp user should not be able to write
in its home directory, and it should never own any files or directories.

Now you're ready to copy vsftpd and the vsftpd(8) and vsftpd.conf(5) man
pages into more useful locations, so enter the command make install.
Manually copy the sample vsftpd.conf file into /etc.

If you want to run vsftpd as a standalone dæmon, create a startup script for
vsftpd in /etc/init.d. Otherwise, configure either inetd or xinetd to start it up as
needed (see the Standalone Dæmon vs. inetd/xinetd section).

If you're running vsftpd as a standalone dæmon, enable the startup script with
chkconfig if you use an RPM-based Linux distribution or with update-

http://vsftpd.beasts.org

rc.d if you run Debian GNU/Linux. Alternatively, if you install vsftpd from an
RPM or deb package, all these steps are executed automatically, with the
probable exception of the last one. Did I mention that binary packages are
much more convenient? Some distributions require manual intervention to
enable newly installed packages. For example, on my SuSE 9.0 system, although
the SuSE vsftpd RPM automatically installed /etc/init.d/vsftpd, I had to issue the
commands chkconfig --add vsftpd and chkconfig --level 35
vsftpd on to enable the script.

 vsftpd's Documentation

Before I begin a discussion of vsftpd that focuses narrowly on running it as a
standalone dæmon serving up only anonymous FTP, I should point out some
valuable, much more complete, sources of vsftpd documentation. First, vsftpd
comes with an EXAMPLE/ directory containing sample configurations for a
variety of FTP scenarios, including running standalone, running with xinetd,
serving anonymous users only and serving local users. If you installed vsftpd
from source code, EXAMPLE is a subdirectory of your vsftpd source code
tarball. If you installed vsftpd from a binary package, it's probably been copied
to your system somewhere under /user/share/doc. It is /usr/share/doc/
packages/vsftpd/EXAMPLE on SuSE systems.

As I mentioned in the previous section, vsftpd has man pages, vsftpd(8) and
vsftpd.conf(5). Finally, the default (sample) vsftpd.conf file itself is well
commented. It doesn't contain all vsftpd options, but it does illustrate the most
commonly used ones. I've successfully gotten vstpd to work several times with
only minimal tweaking to the sample vsftpd.conf file.

 Standalone Dæmon vs. inetd/xinetd

Before configuring vsftpd itself, you must decide whether to run it as a
standalone dæmon or by way of a super-server, inetd or xinetd. In previous
versions of vsftpd, its developer recommended using it with xinetd due to
xinetd's logging and access-control features. However, vsftpd versions 1.2 and
later have native support for most of those features. For this reason, Evans now
recommends that vsftpd be run as a standalone dæmon. In addition, a
performance cost is associated with using inetd or xinetd. The cost isn't
warranted if your system is to be a dedicated FTP server or if you anticipate FTP
comprising a significant percentage of your system's activity.

I'm going to take the liberty of using standalone dæmon examples for the
remainder of this article. vsftpd's included documentation amply describes how
to use vsftpd with inetd and xinetd; see the example configurations included in
vsftpd's EXAMPLE directory.

Interestingly, the vsftpd package that comes with SuSE 9 is preconfigured to run
from xinetd, while Debian 3.0's runs from inetd. This is especially logical in the
latter case, because Debian 3.0 comes with an older version of vsftpd (1.0.0),
but SuSE 9.0 uses vsftpd 1.2. The vsftpd RPMs that come with Fedora and Red
Hat install vsftpd as a standalone dæmon. At any rate, there are two steps to
converting vsftpd from inet/xinetd startup to standalone startup.

First, as I mentioned in the Getting and Installing vsftpd section, you must make
sure you've got an enabled startup script for vsftpd in /etc/init.d. The Fedora
Core 1 and SuSE 9.0 packages both provide and install one; in SuSE's case it's
present but disabled by default, in favor of xinetd. If you used Debian 3.0's
vsftpd package or installed vsftpd from source, however, you need to create
your own startup script. You also must create the corresponding links in the
directories for the runlevels at which you want vsftpd to run, such as rc3.d and
rc5.d. The last step is easy to do automatically with chkconfig or update-
rc.d.

Second, you need either to disable vsftpd's xinetd file, by setting disable =
yes in the file /etc/xinetd.d/vsftpd or to comment out vsftpd's line in /etc/
inetd.conf. Alternatively, you can disable inetd or xinetd altogether, if vsftpd
was the only important thing it was starting.

Arguably, it's irresponsible of me to recommend that you enable an
application's startup script before you've fine-tuned that application's security.
In my opinion, enabling is one thing; you're fine so long as you follow through
and lock down the service before actually starting it or rebooting your system.

Third, you need to make sure that in /etc/vsftpd.conf the parameter listen is set
to YES. This brings us to vsftpd configuration proper.

 Configuring vsftpd for Anonymous FTP

Actually, you may not need to do anything more to configure vsftpd for secure
anonymous FTP. Its default configuration settings permit only anonymous FTP.
What's more, no write commands of any kind are enabled by default, and in
recent versions of vsftpd, the dæmon chroots itself to the directory /usr/share/
empty whenever possible. This is one of the things I love about vsftpd. It
actually takes more work to loosen its security than it does to tighten it down.

Assuming your distribution hasn't altered this default behavior, all you need to
do now is populate your anonymous FTP user account's home directory with
FTP content for people to download. On Debian 3.0, SuSE 9.0 and Fedora Core
1, the anonymous FTP user is ftp by default, with a home directory of /srv/ftp
for Debian and SuSE and /var/ftp in the case of Fedora. If you installed vsftpd
from source, the anonymous FTP directory is whatever home directory you

assigned to the anonymous FTP user account you created. Pay special attention
to ownership and permissions when populating your FTP directories. Defaults
may or may not be appropriate, but at least do a quick ls -al now and then
to see for yourself.

Even though default settings suffice for many users, let's take a closer look at
the vsftpd.conf parameters most relevant to anonymous FTP. By default, this
file resides in /etc, but on Red Hat and Fedora systems it resides in /etc/vsftpd/.
Listing 1 shows a sample vsftpd.conf file.

Listing 1. vsftpd.conf Settings for Anonymous FTP

listen=YES
listen_address=
anonymous_enable=YES
ftp_username=ftp
anon_root=[$ftp_username's home directory]
write_enable=NO
anon_upload_enable=NO
anon_mkdir_write_enable=NO
anon_other_write_enable=NO
anon_world_readable_only=YES
anon_max_rate=0
idle_session_timeout=300
ascii_download_enable=NO
ascii_upload_enable=NO
connect_from_port_20=NO
port_enable=YES
hide_ids=NO
log_ftp_protocol=NO
syslog_enable=NO
max_per_ip=0
cmds_allowed=
local_root=/usr/share/empty
nopriv_user=nobody
ftpd_banner=(vsFTPd 1.2.0)

In practice, you'd never use a vsftpd.conf file exactly like Listing 1. All
parameters in it are, in fact, set to their default values. Rather, this listing is
meant as a quick reference. Let's discuss its parameters in turn.

• listen: tells vsftpd to run as a dæmon rather than as a per-connection
process invoked as needed by inetd or xinetd. Default value is NO.

• listen_address: specifies on which local IP address vsftpd should listen for
connections. The default is "" (null), signifying all local IP addresses. If you
want to run multiple virtual FTP servers, you need to set this parameter in
each virtual server's configuration file (see the next section, Virtual
Servers).

• anonymous_enable: this parameter, whose default is YES, determines
whether vsftpd accepts anonymous logins. If set to YES or not set at all,
vsftpd accepts connections from the users anonymous and ftp (the two
are equivalent) without requiring a real password.

• ftp_username: the name of the user account used for anonymous logins,
that is, FTP logins as anonymous and ftp. This account must exist in /etc/

passwd and should have a valid home directory that is not owned by the
user account; the default is ftp.

• anon_root: the directory vsftpd should chroot into for anonymous logins.
This defaults to the home directory of the anonymous ftp user account
(see ftp_username), but you can use this parameter to set a different
anonymous FTP root. Either way, this directory should not be owned by
the anonymous ftp user.

• write_enable: unless this parameter is set to YES, no user may upload any
files under any circumstances, regardless of other settings in vsftpd.conf.
Its default value is NO.

• anon_upload_enable: if this parameter and write_enable are both set to
YES, anonymous users are permitted to upload files into directories on
which the anonymous user account has write permission.

• anon_mkdir_write_enable: if this parameter and write_enable are both set
to YES, anonymous users are permitted to create new directories within
directories on which the anonymous user account has write permission.

• anon_other_write_enable: if this parameter and write_enable are both set
to YES, anonymous users are permitted to delete and rename directories
within directories on which the anonymous user account has write
permission.

• anon_world_readable_only: if set to YES, this parameter forbids
anonymous users from downloading any non-world-readable file. Most
useful if anonymous users are able to upload files you don't want other
anonymous users to download.

• anon_max_rate: specifies the maximum data transfer rate, in bytes per
second, that anonymous users can use. The default value is 0, which
means unlimited.

• idle_session_timeout: the maximum amount of time, in seconds, allowed
to transpire between FTP commands until a session is closed forcibly by
the server. Default value is 300, but if you're worried about denial-of-
service attacks, you may want to set this lower.

• ascii_download_enable: if set to YES, this allows users to perform ASCII-
mode downloads, as opposed to binary-mode. The default is NO because
ASCII-mode is seldom if ever necessary, and it's much less efficient, so
much so as to represent a potential vector for denial-of-service attacks.

• ascii_upload_enable: ASCII-mode uploads, on the other hand, are
sometimes necessary for such things as scripts. This parameter's default
value is, nonetheless, NO.

• connect_from_port_20: in active-mode FTP sessions, whenever a user
downloads anything, including directory listings, the server initiates a new
connection back to the client, conventionally originating from the server's
TCP port 20. By default, however, vsftpd originates such connections from

a higher, non-privileged port, in order to avoid having to run as root. To
change this default behavior, in case your FTP users connect from behind
proxies or firewalls that don't expect such behavior, set this parameter to
YES.

• port_enable: set this to NO to disable PORT commands, which effectively
disables active-mode FTP altogether. Default is YES.

• hide_ids: if set to YES, replaces the owner and group fields in all directory
listing output to ftp and ftp, respectively. Personally, I think this can be a
useful bit of obscurity when used on public FTP servers, but the default is
NO.

• log_ftp_protocol: if set to YES, turns on per-command logging, FTP
protocol commands, that is, triggered by but distinct from FTP user-space
commands. Invaluable for troubleshooting.

• syslog_enable: normally vsftpd writes log messages to /var/log/vsftpd.log.
Setting this parameter to YES (its default is NO) sends those messages
instead to the system's syslog service, using the FTPD facility.

• max_per_ip: specifies the maximum number of concurrent connections
permitted from a single source IP address. Limiting this may seem like a
good idea—the default is 0, which means unlimited—but doing so has a
disproportionate effect on users connecting from behind NAT/SPAT
firewalls, which cause multiple users to appear to originate from the same
source IP address.

• cmds_allowed: specifies a comma-separated list of allowed FTP
commands; default value is "" (null), which means unlimited. Only FTP
protocol-level commands may be specified, not the commands commonly
accepted by FTP client software packages. For example, to allow clients
only to list files, change working directories and download files, you'd use
cmds_allowed=USER,LIST,NLST,CWD,RETR,PORT,QUIT. The
Web site www.nsftools.com/tips/RawFTP.htm is a useful reference for
these commands.

• local_root: this specifies an empty, root-owned directory to which vsftpd
chroots itself any time it doesn't need access to other parts of the
filesystem. Default value is /usr/share/empty.

• nopriv_user: specifies the non-privileged user vsftpd runs as whenever
possible. vsftpd obviously needs to be root when doing things like binding
to TCP port 21. It demotes itself as soon as it can, however, in order to
lessen the chance of a buffer-overflow vulnerability or other process-
hijacking event leading to root compromise.

• ftpd_banner: banner message to display when FTP clients attempt to
connect. Default message is hard-coded into vsftpd; in v1.2.0, it's simply
(vsFTPd 1.2.0). Alternatively, you can use the parameter banner_file to
specify a text file containing your banner message.

http://www.nsftools.com/tips/RawFTP.htm

The vsftpd.conf(5) man page explains these and many other parameters you
can use. Believe it or not, I've only scratched the surface here.

 Virtual Servers

If you want to have multiple virtual FTP servers residing on the same physical
host, one with multiple IP addresses, vsftpd can do this easily. All you need to
do is run multiple instances of the vsftpd dæmon, each with its own vsftpd.conf
file specifying on which IP address to listen and which directory to use as its
anonymous root.

For example, suppose I've got two IP addresses assigned to my machine, 1.2.3.4
and 1.2.3.5, registered in DNS to the names knusper and rover, respectively. In
that case, I could have two configuration files for vsftpd, say, /etc/
vsftpd.knusper and /etc/vsftpd.rover. Listings 2 and 3 show these files.

Listing 2. Virtual FTP Server Configuration File /etc/vsftpd.knusper

listen=YES
listen_on=1.2.3.4
connect_from_port_20=YES
anonymous_enable=YES
anon_root=/srv/ftp/knusper
ftpd_banner=Welcome to FTP at knusper.wiremonkeys.org. Behave!

Listing 3. Virtual FTP Server Configuration File /etc/vsftpd.rover

listen=YES
listen_on=1.2.3.5
connect_from_port_20=YES
anonymous_enable=NO
ftpd_banner=Private FTP at rover.wiremonkeys.org. Strangers-B-gone.
DANGER: don't use the following unless you know what you're doing!
local_enable=YES

Notice my possibly foolish use of the local_enable parameter in Listing 3. It's
dangerous to set this to YES, because FTP logon credentials are sent in clear
text. You never want to expose real system credentials to eavesdropping,
especially if your server is Internet-connected. The real reason I show it here is
to illustrate that because each virtual server uses its own configuration file, you
can specify completely different behaviors for each. One virtual server may
have a public uploads directory that anonymous users write to, whereas
another may be a strictly read-only FTP site. Conversely, you need to take care
that settings you consider to be important in preserving overall system security
are set consistently between different virtual servers running on the same
machine.

Besides creating different configuration files for each virtual FTP server you
want vsftpd to serve up, you also need to alter your startup script accordingly.

The startup script on my sample server, represented by Listings 2 and 3, would
need something equivalent to these two lines:

vsftpd /etc/vsftpd.knusper
vsftpd /etc/vsftpd.rover

If you run Red Hat or Fedora, this already has been taken care of for you. The /
etc/init.d/vsftpd script included with those distributions' vsftpd RPM packages
automatically parses the directory /etc/vsftpd for as many configuration files as
you care to put there, so long as the filename of each ends with .conf. This
strikes me as an excellent bit of foresight on the part of the Red Hat team.

That's all you need to know about setting up a simple and secure anonymous
FTP server with vsftpd. As I mentioned, I've only covered a subset of what
vsftpd is capable of doing. Despite its minimalist design philosophy, this is a
powerful FTP server indeed. Fortunately, it's also well documented, so it's really
no cop-out for me to refer you to the vsftpd.conf(5) man page and the
EXAMPLE/ directory for information on the many other uses of vsftpd.

Mick Bauer, CISSP, is Linux Journal's security editor and an IS security
consultant in Minneapolis, Minnesota. He's the author of Building Secure
Servers With Linux (O'Reilly & Associates, 2002).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/toc123.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 EOF

Carrier Grade Linux

Ibrahim Haddad

Issue #123, July 2004

Your next mobile phone server will run Linux. Leading telecom vendors are
enhancing Linux for reliability, high availability, scalability and more.

In January 2002, the Open Source Development Labs (OSDL, www.osdl.org)
established the Carrier Grade Linux (CGL) Working Group. This initiative was
intended to enhance the Linux kernel to achieve a highly available, secure,
scalable and easily maintained open-source platform suitable for carrier grade
systems.

Many companies joined the CGL initiative, and today the CGL is composed of
member companies that work together contributing to the CGL requirement
definition, helping current and starting new open-source projects to meet these
requirements. Many CGL member companies already have contributed pieces
of various technologies to open source to make the Linux kernel a more viable
option for telecom platforms. CGL activities are providing momentum for Linux
in the telecom space, allowing it to be an alternative to proprietary operating
systems.

Gateways, signaling and management servers are the three main areas into
which the CGL Working Group expects the majority of applications
implemented on CGL platforms to fall. In addition to specifying the
requirements, the Working Group also identifies existing open-source projects
supporting the road map, implementing required components and interfaces
of the platform. When an open-source project does not exist to support a CGL
requirement, the Working Group launches or supports new projects to
implement the missing functionality.

The scope of the CGL Working Group covers two main areas, carrier grade
enhancements to the kernel and development tools. Kernel enhancements

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.osdl.org

cover availability, security, scalability and reliability, as well as changes to
interfaces for hardware, user-level code, application code and development
and debugging tools. Software development tools covered by CGL include
debuggers and analyzers.

The CGL Requirements Definition Version 2.0, released October 9, 2003, divides
the requirements into the following main categories:

1. Clustering supports the use of multiple carrier server systems providing
higher levels of service availability through redundant resources and
recovery capabilities.

2. The security requirements aim at maintaining a certain level of security
while not endangering the goals of high availability, performance and
scalability. These requirements support the use of additional security
mechanisms to protect the systems and provide special mechanisms at
kernel level to be used by telecom applications.

3. Standards: CGL specifies standards to which compliance is required,
including the Linux Standard Base, POSIX standards and a number of
Internet RFCs.

4. CGL specifies platform requirements that support interactions with the
hardware making up carrier grade systems. Examples of platform
requirements include: hot insert, hot remove, remote boot support, boot
cycle detection and support for diskless systems.

5. Availability requirements support heightened availability of carrier grade
systems, such as improving the robustness of software components or by
supporting recovery from failure of hardware or software. Examples
include support for watchdog timer interface, disk and volume
management, Ethernet link aggregation and link failover and application
heartbeat monitor.

6. Serviceability requirements support the availability of applications and the
operating system. Examples include support for producing and storing
kernel dumps, dynamic debug of the kernel and running applications,
platform signal handler and remote access to event logs.

7. Performance requirements support performance levels necessary for the
environments a carrier grade system would encounter. Examples include
support for application (pre) loading, soft real-time performance, kernel
preemption and RAID 0 support.

8. Scalability requirements support vertical and horizontal scaling of carrier
server systems, such as the addition of hardware resources to result in
acceptable increases in capacity and throughput.

9. Tools requirements provide capabilities to facilitate diagnosis, such as the
support for a kernel debugger, kernel dump analysis and the capability to
debug multi-threaded programs.

Many individuals within the CGL initiative are active participants in the main-
line Linux development community. In addition, the implementations providing
the carrier grade enhancements to the kernel are open-source projects and are
planned for integration with the Linux kernel. All of the enhancements are
available from their respective project Web sites; please refer to the OSDL Web
site for links.

As of January 2004, the CGL Working Group is developing CGL version 3.0. The
group expects to release the final official version by October 2004. The
participation in OSDL CGL is open to everyone. For more information, please
visit the OSDL Web site.

Ibrahim Haddad, contributing editor to LJ, is a Researcher at the Ericsson
Research & Innovation Department in Montréal, Canada.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/toc123.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Arkeia 5.2 Network Backup

Dan Wilder

Issue #123, July 2004

The design shows careful thought about what a backup manager needs.

Product Information.

• Vendor: Arkeia
• URL: www.arkeia.com
• Price: $590–$1,190 US for three to seven computers; larger systems may

range up to $20,000 US depending on configuration.

The Good.

• Multiple platform.
• Centrally scheduled backups.
• Hot-backup plugins.
• Browseable index of all tapes.
• Good documentation.

The Bad.

• Non-standard GUI.
• Disappearing error messages.
• Incomplete context-sensitive help.

We haven't checked on Arkeia since April 1999 (/article/3166), so we thought
we'd take another look and see how this software is coming along.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.arkeia.com
https://secure2.linuxjournal.com/ljarchive/LJ/060/3166.html

 Features

Arkeia Network Backup is a heterogeneous network client/server backup
solution using a Linux or UNIX backup server. Client system backup software is
available for Linux, as well as a variety of UNIX and UNIX-like OSes, including
Mac OS X and Microsoft Windows 98, ME, NT, 2003 and XP.

Plugins are available for hot backup of applications including Oracle, Microsoft
Exchange, Lotus Notes, IBM DB2 and MySQL.

Supported backup media include popular SCSI tape drives, libraries and
autoloaders.

Arkeia Disaster Recovery, a separate product not reviewed here, provides bare-
metal recovery for backed-up Linux clients and servers. Both Network Backup
and Disaster Recovery are available for free 30-day demos. A third product,
Arkeia Lite, suitable for backing up one Linux server and two desktop systems,
is available at no charge.

We reviewed Arkeia 5.2.7 Network Backup, downloaded from www.arkeia.com,
along with PDF documentation. The Linux version supports Debian GNU/Linux
2.2 and 3.0, Mandrake 7.2–9.2, Red Hat 6.0–9.0, Slackware 8.0 and SuSE 7.1–9.0.

 Installation

The documentation, downloaded as a PDF, had about 500 pages of material,
enough to be a little intimidating. The shortest document was the Quick Start
Guide. I began there.

My bench system's distribution of the day was Debian 3.0. The Debian
installation for Arkeia came as a .tar.gz file, not as a Debian package. I
unpacked this, cd'd to the top-level directory and then ran install, accepting
all defaults.

Next I started xarkeia. Its futuristic design, as shown in Figure 1, takes some
getting used to.

http://www.arkeia.com
https://secure2.linuxjournal.com/ljarchive/LJ/123/7303f1.large.jpg

Figure 1. Option screen from the Savepacks Menu showing icons, in the bar above advanced
options, for navigating back up to the root menu.

Continuing with the Guide's instructions, I set a password for the Arkeia root
user and configured and ran a dummy backup. As long as I followed the
directions carefully, all went as indicated. At one point I did something out of
sequence, attempting to start a backup prior to configuring any tapes. The
backup stalled, and I was unable to configure tapes or to abort the backup
using the GUI or anything else I knew to do at the time. A note on the support
Web site elicited an e-mail response within a half hour, telling me to stop and
restart a dæmon. I was then able to proceed. The dummy backup ran without
further incident, and initial installation was complete. Arkeia was ready to
configure real backups.

 Architecture

Arkeia organizes things using a database where the administrator sets up:

• Tape drives.
• Drivepacks: groups of similar tape drives.
• Tapes: each with its own label and history information.

https://secure2.linuxjournal.com/ljarchive/LJ/123/7303f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7303f1.large.jpg

• Tape pools: groups of similar tapes.
• Savepacks: groups of files and directories backed up together.
• Backups: a backup uses one drivepack to store one savepack in tapes

from one tape pool.
• Users: a variety of user roles are available, allowing the work of managing

backups at a large site to be delegated.
• Servers: one installation may extend across multiple backup servers.
• Clients: multiple client systems are accommodated per server.

Backups are controlled and scheduled from the backup server. Backups can be
manual or automatic, called Periodic by Arkeia. They also can be complete or
incremental, an arrangement by which files that have not changed since a
baseline are not backed up. Incremental backups are scheduled in a multilevel
fashion, with the baseline for a given level being the previous lower-level
backup. Backup level is the same for all files in a given periodic backup.

You can schedule any backup to put multiple backups on one tape, filling the
tape, or you can start a new tape.

A savepack contains items to be backed up, such as files, databases and
directories. One savepack can contain items from multiple hosts. An item can
be backed up using a plugin, such as the one for MySQL.

Libraries, stackers and so on have special management interfaces under Arkeia
but are configured as sets of drives enrolled in drivepacks. From the point of
view of managing a backup itself within Arkeia, there's not much difference
between a library and any other collection of drives.

 The GUI

Arkeia can be managed through a GUI client program, xarkeia, or by means of a
set of command-line clients. The actual work is done by dæmons reached
through these clients. Many system administrators may find the GUI easier to
use for routine operations and configuration.

The xarkeia GUI was written from scratch on top of X, using no Motif, Qt, GTK or
any other third-party GUI libraries. The appearance is distinct and different, and
although it requires some getting used to, was easy to use after only a little
practice. The window decoration buttons you might be used to seeing along the
top bar aren't there; they are replaced by a circle of buttons in the upper-left
corner. I missed the ability to move an instance of xarkeia from one virtual
desktop to another.

xarkeia has an error message panel near the top that was a source of some
annoyance. It featured error messages that vanished too quickly for careful
reading.

Context-sensitive help is provided from a Help button in the button circle.
Based on an unscientific sampling, I found meaningful help messages in only
about half of the screens. There is room for some improvement here.
Experienced system administrators should not shy away from reading manuals,
however, and I found the Arkeia User's Guide to be complete and
comprehensive.

I was unable to discover much by way of customization available for the GUI.
The colors and fonts it comes with are, as far as I can tell, the ones you will live
with.

Other than that, I had no problems with xarkeia. Among the many features I
liked was what they called their function path bar. If you use many applications
having multiple levels of menus, you're no doubt all too used to clicking back,
back and so on until you climb back out to the top-level menu. xarkeia's
function path bar, as shown in Figure 1, stacks the icons you've used as you
descend to the lower levels of a menu tree. Clicking an icon in this bar can take
you back out through multiple menu levels with only a single mouse click.

 A Real Backup and Restore

The Arkeia User's Manual is the next stop after finishing the Quick Start Guide.
At 330 pages, there's a lot of reading there. I opened the User's Manual using
xpdf and continued on to configure some real backups using an Exabyte VXA
drive. The drive was detected and configured easily. A new drivepack was
defined, several tapes entered and labeled and enrolled in a pool. The tape
labeling dialog could have used an eject button. I already had a savepack set up
from the Quick Start Guide exercises, so I ran an interactive backup and then
configured a periodic one to run several times, allowing me time to add and
delete files in between.

Within the Restoration menu, files can be selected by filename search or by file
tree browser. The “Invalid regular expression!” popup I got when I clicked
Search puzzled me, until I read the related section of the User Manual, which
pointed out that I had to check some boxes in the search screen as well as
enter search words into adjacent text boxes. “You must check at least one
checkbox” would have been more helpful.

Restoration offered many options with respect to where to restore, ownership,
access rights, overwrite of existing files, verifying backed-up files and so on.
After selecting files using the backup browser, I started restoration only to be

told “Please insert tape Monthly22” in one tape drive. After a little bit of
guessing I was able to initiate restoration.

 Tape Indexing

Arkeia maintains on-line tape index, history and configuration information that
it uses when it is time to restore. This index makes it possible to browse the
backed-up date on-line for easy restoration. The downside, as always with such
an arrangement, is that there is a point of failure: loss of the on-line index.

This index is kept in the Arkeia installation directory, by default /opt/arkeia, in
the server/dbase subdirectory. In the event of disaster, it can be reconstructed
from the tapes by use of provided utilities. Every backup tape must be fed
through, which can be a lengthy and laborious process. The fact that index
rebuilding is supported at all is a good thing. I've used backup products with
on-line indexes but no way to rebuild them from tape. Having a way to rebuild
these if need be is good; however, it is better to avoid being in a place where
this is needed.

Arkeia Disaster Recovery provides facilities to handle this situation,
accommodating bare-metal restore of the backup server or any of the client
systems direct from tape. For the prudent but more adventurous
administrator, who might want to restore using a standard installation method,
followed by bringing in backed-up data files from tape, Arkeia Support advises
me that an up-to-date copy of the arkeia install directory kept in a safe location,
augmented by snapshots of the server/dbase directory taken after each
backup, should suffice to allow a restore even following a loss of the backup
server. Always test your restoration procedure. Your results may vary.

 Other

The product accommodates tape duplication to use, for example, if you want to
keep both on-site and off-site copies of backup tapes.

The command-line clients, covered partly in the ending chapters of the User's
Guide, partly in the 137-page Command Line Interface Manual, permit you to
manage Arkeia through a command-line interface and let you access this
software by way of your own scripts. Some sample scripts are provided.

 Overall

I like this product. The GUI takes a little getting used to, and the fit and finish is
rough in some places. The design shows careful thought about what a backup
manager needs. Cross-platform support is good. The command-line clients
ensure that you're not stuck with a closed-in GUI that won't let you get beyond

what the GUI provides. The Quick Start Guide offers a painless introduction to
the software, and the other two manuals pick up nicely where it leaves off. Free
30-day evaluation support was quick and courteous.

Dan Wilder is technical manager at Specialized Systems Consultants, Inc.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/toc123.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 From the Editor

Traps? Who Needs Them?

Don Marti

Issue #123, July 2004

Use the development tools in this issue to clear the way for a low-pain
migration from your remaining non-Linux systems.

Our reader surveys consistently show that a lot of our readers are still running,
and even developing code for, non-Linux operating systems. Whatever system
you're coding for today, you can use Linux as your development platform and
give yourself the flexibility of moving to Linux tomorrow.

In a recent essay entitled “Free But Shackled—The Java Trap”, Richard Stallman
wrote, “If you develop a Java program on Sun's Java platform, you are liable to
use Sun-only features without even noticing. By the time you find this out, you
may have been using them for months, and redoing the work could take more
months.” That's bad news, but platform lock-in isn't only for Java developers. So
build and run your projects on an all-free system regularly to save yourself
from accidental lock-in as you work. We're happy to offer four complete cross-
platform sample applications in this issue.

First, Python is one of our favorite languages here at Linux Journal. Its simplicity
makes old code, and other people's code, easy to understand and maintain. Let
David Reed's GladeGen (page 40) write the GUI code for you, so you can focus
on business logic.

The best development frameworks are the ones that grow cooperatively with
an application that depends on them. Mozilla is a good example. Don't get
Mozilla the browser mixed up with Mozilla the framework—work through Nigel
McFarlane's process viewer utility on page 66 to understand how to use
Mozilla's framework to write non-Web applications.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

As dedicated followers of fashion, we're happy to have a blog tool written with
the .NET-compatible Mono. Ian Pointer shows how it's done and scores two
buzzword points on page 50.

If you need to develop for Microsoft Windows, you can save yourself the
expense and learning time of another set of development tools. Joey Bernard's
article on MinGW (page 58) shows you how to add Windows support to your
Linux apps or bring Windows apps to Linux with minimal rewriting.

Finally, on page 83, John Healy, Andrew Haley and Tom Tromey explain how
Red Hat made the popular Eclipse integrated development environment build
natively with no Java Virtual Machine (JVM), and no proprietary dependencies,
at all. Maybe Java developers are finally getting the hang of this cross-platform
thing. Stay out of traps, don't fall for lock-in, and enjoy the issue.

Don Marti is editor in chief of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/toc123.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Readers sound off.

 No Accounts for the Penguins?

On a recent trip to the Camden Aquarium in Camden, New Jersey, I found that
the penguins were attracted to my Linux hat. My girls loved the penguins, and I
plan on raising them on Linux desktops (the girls that is).

—
Shane M. Parker

 BSD, Please

May I suggest including other open-source UNIX-like operating systems? I have
just installed OpenBSD for a project at work. Although it would have been
easier with Linux, if the boss says BSD then it is BSD. I must admit that it was a
pain; however, after going through the process for the right application
environment, OpenBSD would be a good choice. In my opinion, Lintel is no
better than Wintel. I would urge you to consider articles on ports, the BSD
solution to software distribution. Two choices are better than one but not much
better.

—
raymond a jacob jr

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Check out www.lnx-bbc.org/garticle.html for an updated version of the
Embedded Linux Journal article on GAR, a ports-like software build system. —
Ed.

 LJ Web Site—Too Political?

The article I received via e-mail titled “Hot Air” (linuxjournal.com/article/7493)
was a huge disappointment to me. Now, I am not a conservative. I am a liberal,
but not the socialist flavor represented by Kerry and Kennedy. This, however, is
all beside the point. Using this technical forum to promote these views is the
kind of thing that frankly makes me want to cancel my subscription. Having said
that, I'm willing to give LJ one more chance, but I will be paying closer attention
to what comes in my e-mail. When I want politics, I know where to go to get it,
and I won't support your magazine with my dollars so they can be spent
promoting political agendas.

—
Jake Fear

Doc Searls replies: if Air America were a right-wing network in the same
position, I would have covered it the same way. Was the whole thing a stretch
as a Linux subject? Sure. But I think it would help broadcasters of all sorts to
take advantage of Linux, the Net and technologists who understand both.
That's what I was trying to get across.

We've been writing about the intersection of Linux, the Net and radio for years,
by the way. The Web site has much more room for material, and much more
leeway around subject matter, than the magazine.

I'm sorry the piece disappointed you, and that you saw it promoting a political
agenda. For what it's worth, I'm a registered independent. In recent elections
I've mostly voted Libertarian. If there's an ax I try not to grind, that's the one.

 Thanks for the Recommendation

Wow! After reading Marcel Gagné's article on SuperKaramba [LJ, May 2004], I
took just a few minutes and configured it for my system. Hats off to all the
SuperKaramba and theme authors and to Marcel for bringing this to your
readers' attention. Thanks for the great magazine and the great articles.

—
Robert Fields

http://www.lnx-bbc.org/garticle.html
http://linuxjournal.com/article/7493

 Everybody SPF Now!

Why would your publication be so pro-SPF without publishing an SPF record for
your own domain?

—
Nicholas Marsh

Try it now, with host -t txt linuxjournal.com. More SPF info at
spf.pobox.com. —Ed.

 Shielded CPUs vs. RTLinux/RTAI

I enjoyed the article entitled “Shielded CPUs: Real-Time Performance in
Standard Linux” in the May 2004 issue of your magazine. I have two brief
comments about this article that should be perceived as constructive criticism.

1) Steve Brosky could have been even more informative in his performance
numbers had he also compared the interrupt response times of his shielded
CPUs technique to the more conventional RTLinux/RTAI (which he himself
acknowledges as being a very good standard by which to judge a real-time
solution). The advantage of providing actual numbers that compare his system
to RTLinux/RTAI is that it would have helped people to decide more quickly
which RTOS is right for them.

Specifically, RTLinux and RTAI have better performance numbers, with latency
and jitter measured in the 10s of microseconds, not 100s, as was demonstrated
using shielded CPUs. For some applications the shielded CPUs technique is
sufficient, while for others it is not. Having had sets of numbers representing
RTLinux/RTAI would have helped people to decide more quickly which real-time
approach is right for them.

2) The article should have spent more time discussing the potential pitfalls
inherent to the shielded CPUs technique. Specifically, CPU shielding still suffers
from priority inversion problems inherent in any system that shares resources
with non-real-time components. In order for CPU shielding to guarantee hard
real-time performance, one must be careful to write programs that do not
access any potentially blocking operations in the Linux kernel.

More specifically, any swapping of memory to disk in the shielded process
throws real-time performance out the window. One has to do things like lock all
process memory to RAM, for example, mlockall(), as well as be careful not to
access any device drivers that may run on non-shielded CPUs or that may
sleep. This must be done in order to avoid priority inversion with the normal,
non-real-time, Linux system.

http://spf.pobox.com

Overall, a good article, but it could have been even more informative, in my
opinion, had the two points above been addressed.

—
Calin A. Culianu

Steve Brosky replies: there are a lot of things that could have gone into the
article—but with limited space you pick and choose what to include.

 Photo of the Month: More Fashion Ideas

Robert Henry's Halloween picture in the May 2004 issue of Linux Journal
prompts me to send you this photo of my two children taken two years ago.

—
Dr Stuart DeGraaf

Photo of the Month gets you a one-year extension for your subscription.
Anyone have a hobby other than sewing? Photos to info@linuxjournal.com. —
Ed.

 Bank Answer One: Monoculture Is Risk

I just read [William Mitchell's] letter to the editor in the May 2004 issue about
Microsoft IE-only bank Web sites. As he mentioned that his bank did this, a
letter to the chairman of the board and the board of directors might do the
trick. I suspect if one points out that mandating usage of the least secure Web
browser is not only an annoyance to those who use more secure ones, but that
insisting on this puts the bank at risk for more theft, this may change.

—
Anonymous

 Answer Two: Moo-ve to Another Bank

What I would do in Mr Mitchell's case is inform my bank that I am the customer.
They exist to service me, and not like a bull services a cow, either. If they choose
not to do that, then I will simply find a bank that will.

—
John McKown

 Answer Three: Fake It

I've been using User Agent Switcher for Mozilla and Firefox to get to sites that
claim to be IE/Netscape-only friendly. It's been working fine. You can check it
out here: www.chrispederick.com/work/firefox/useragentswitcher.

I'd e-mail William Mitchell but you don't post e-mails in the Letters section, for
obvious reasons! Maybe you could pass this on to him.

—
Sam Mingolelli

 Another Satisfied Reader

I just wanted to let you know how much we all look forward to reading your
magazine each month. Keep on doing what you're doing.

mailto:info@linuxjournal.com
http://www.chrispederick.com/work/firefox/useragentswitcher

—
Dan

 sudo adduser bhm

We've run enough photos of readers' and contributors' children that it's time
for one from an editor. Here's a photo of my son Bilal at age zero days.

—
Don Marti

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/toc123.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

UpFront

• diff -u: What's New in Kernel Development
• LJ Index—July 2004
• They Said It

diff -u: What's New in Kernel Development

Zack Brown

Issue #123, July 2004

Roland Dreier and the folks at OpenIB.org have produced a rough cut of an
InfiniBand stack, including a low-level driver for Mellanox HCA hardware;
upper-layer protocols such as IP-over-InfiniBand, SCSI RDMA protocol, sockets
direct protocol (SDP), uDAPL and MPI; and accompanying user-space utilities.
The code itself is open source, but Microsoft has intellectual property claims on
SDP and does not automatically allow it to be used in open-source projects. As
a result, Roland and the others have split their InfiniBand stack into free and
encumbered packages, a decision that seems to satisfy everybody for the
moment.

Intel has started a SourceForge project for its PRO/Wireless 2100 miniPCI
network adapter driver for Linux kernels in the 2.4 and 2.6 series. Although the
firmware is binary-only, the rest of the project seems to be in keeping with
open-source methods. A public mailing list serves to connect developers, and
new updates are published frequently, so everyone can try them out and
report problems or suggest enhancements. Currently they've classified the
code as early beta, so various bugs and missing features should be expected. At
the same time, the Intel developers intend to be particularly sensitive to issues
arising from interactions with particular Linux distributions, so hopefully the
default installations of most distributions will break in only known, documented
ways.

Niraj Kumar has ported UFS1 and UFS2 to Linux. UFS1 has been the native BSD
filesystem for a long time, and UFS2 is a recent extension, adding such features

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

as 64-bit block pointers and extended file storage. Niraj's Linux port is read-
only at the moment, as work has just begun. UFS2 itself is quite new, and even
on the BSD operating systems it does not yet support such things as the GRUB
bootloader. It is the default only on FreeBSD systems; NetBSD still creates a
normal FFS filesystem by default. Originally derived from UFS1 by Kirk McKusick

and Poul-Henning Kamp, UFS2 is undergoing active development. Linux
support apparently will follow close upon its adoption by the BSDs.

Michael Geng has produced a GPLed device driver for the I2C-based Videotext/
Teletext decoder SAA5246A, providing the same interface as that of the
SAA5249 chip driver. Based in part on work by Martin Buck, Michael has
cleaned up the existing code and completed the work to the point that Andrew

Morton has accepted it into the 2.6 tree as part of the official kernel sources. As
Michael points out, newer TV cards no longer include these Teletex decoders
and instead rely on the CPU to perform the same function. When present,
however, these chips appear to do a better job and are worth supporting where
possible.

Emulex has decided to open source the driver for its LightPulse Fibre Channel
Adapter family and has created a SourceForge project page to accomplish this.
The hope is to get the code cleaned up and completed and have it accepted
into the 2.6 kernel tree. When a company decides to free up the source code
for one of its drivers, they typically are given a warm batch of kudos from the
kernel developers, as well as comments, criticism and patches from developers
looking over the code for the first time. In this case, Jeff Garzik has done the
most probing analysis, offering a ton of feedback to the Emulex developers.
Apparently there are some ugly bits in the code, as the Emulex folks had
warned in the announcement, but Emulex seems committed to doing whatever
cleanup is necessary to make the driver acceptable to Andrew and the rest of
the kernel folks.

Kristian Soerensen has been working recently on Umbrella, a new security
project for handheld devices intended to help protect them from viruses and
other cracks. One of the main features of Umbrella is its unambiguous
configuration system. All complexity has been eliminated, so it is not possible
for the user to mistakenly allow undesired breaches.

LJ Index—July 2004

• 1. Trillions of icy objects in the Oort cloud surrounding the solar system: 6
• 2. Transactions per minute (tpmC) of Oracle Database 10g on an NEC Intel

system running SuSE Linux Enterprise Server 9: 609,467
• 3. Price-performance ratio in $/tpmC of the above: 6.78

• 4. Size in billions of dollars of the embedded software market in 2002: .
675

• 5. Projected size in billions of dollars of the embedded software market in
2007: 1

• 6. Mandrake percentage in DesktopLinux's 2004 Desktop Linux survey:
20.3

• 7. Red Hat percentage in DesktopLinux's 2004 Desktop Linux survey: 19.3
• 8. SuSE percentage in DesktopLinux's 2004 Desktop Linux survey: 16.0
• 9. Debian percentage in DesktopLinux's 2004 Desktop Linux survey: 11.1

• 1: Solarviews.com
• 2, 3: Oracle

• 4, 5: Gartner, in BusinessWeek

• 6–9: DesktopLinux.com

They Said It

The technology (software) industry really only has 75 leaders, they just
continually recycle in and out of successful and failed companies.

—Eric Norlin (ericnorlin.typepad.com/weblog/2004/03/cracking_the_in.html)

When you experience bad service it's because that service is hostage to a
business plan.

—Britt Blaser, telephone call

The most important operating system you write applications for ain't Windows,
or Macintosh, or Linux. It's Homo Sapiens Version 1.0. It shipped about a
hundred thousand years ago, there's no update in sight; but it's the one that
runs everything.

—Bill Hill (channel9.msdn.com)

Open source has no secrets.

—Doc Searls

When you stop to think about it, you keep secrets from people when you don't
want them to know the truth. Secrets, even when legitimate and necessary, as
in genuine national-security cases, are what you might call passive lies.

http://ericnorlin.typepad.com/weblog/2004/03/cracking_the_in.html
http://channel9.msdn.com

—Walter Cronkite (www.linuxjournal.com/article/5031 and staugustine.com/
stories/040404/opi_2233122.shtml)

I figured yesterday I might as well see how hard it would be to turn GtkTextView
into a real editor.

I started with the three hundred lines of Python and a fairly simple Glade file I
made on Christmas day. After two days of hacking, I have added a thousand
lines of code, and now this thing is fairly usable. Yes, I'm now writing this log
with the new editor.

—Lars Wirzenius (liw.iki.fi)

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.linuxjournal.com/article/5031
http://staugustine.com/stories/040404/opi_2233122.shtml
http://staugustine.com/stories/040404/opi_2233122.shtml
http://liw.iki.fi
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/toc123.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Our experts answer your technical questions.

 Adding a New Service

I have written an SMS system in Java. I want to execute that system as a
background service in Linux. My system is in a *.jar file. How can I do it as a
service in Red Hat?

—
Kasun Perera

kasun@teamwork.lk

You need to create a script file that you would put in the /etc/rc.d/init.d/
directory. It must have a very specific format, as clearly indicated on this page:
www.sensi.org/~alec/unix/redhat/sysvinit.html. I suggest that you look at other
scripts in that directory to grasp the general format of the file, especially the
first 15 lines or so.

—
Felipe Barousse Boué

fbarousse@piensa.com

When starting a new service, I like to copy the init script for SSH, because it's
usually the simplest. Put in whatever commands you need to run to start your
program from the command line. For example, you might need to set some
environment variables to run a Java program. Run your init script from the
command line to make sure it starts and stops your new service correctly, then
use your distribution's tool for managing runlevels to make it run at startup.
Use chkconfig on Red Hat.

—
Don Marti

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:kasun@teamwork.lk
http://www.sensi.org/~alec/unix/redhat/sysvinit.html
mailto:fbarousse@piensa.com

info@linuxjournal.com

 Speeding Up Webmin

I use Webmin and ZoneMinder on my P4 2.2GHz, 1GB RAM system, and the
response is less than what I would expect. Is there a way to speed up the
loopback device?

—
Howard Watts

howardwatts@sbcglobal.net

I just upgraded some Webmin systems to the latest Webmin, 1.140 at the time
of this writing, and I noticed a substantial speed improvement in operation. I
upgraded all modules as well. All this was done directly from within Webmin.

—
Felipe Barousse Boué

fbarousse@piensa.com

The only lag on the loopback device is traversing the TCP stack; this should be
very fast. If you see performance issues, you may want to look at a program
called top (see man top) to see if there are any out-of-control processes.

—
Christopher Wingert

cwingert@qualcomm.com

It is highly unlikely that the loopback device is the culprit. It's more probable
that there's something else causing the performance lag, network function or
otherwise. Perhaps it's having timeout issues due to failed DNS lookups or
something similar?

—
Timothy Hamlin

mailto:info@linuxjournal.com
mailto:howardwatts@sbcglobal.net
mailto:fbarousse@piensa.com
mailto:cwingert@qualcomm.com

thamlin@zeus.nmt.edu

 Winmodem: Hack or Replace?

I can't get my modem to work. I have a Creative Labs Blaster v92 PCI internal
modem. Linux recognized a Conexant chipset and attempted to install the
driver, but I received an error message. Should I try installing SuSE Pro 9.0
instead?

—
Manny

manuel61@joimail.com

Probably the easiest and most advisable solution is to purchase a very
inexpensive modem that is not a Winmodem. You probably would get a better
setup with less complex stuff, and you will get a modem that will last for many
future Linux generations. Besides, you will show manufacturers that we all
want standard modems, not proprietary ones.

—
Felipe Barousse Boué

fbarousse@piensa.com

It's almost never necessary to upgrade your entire operating system simply to
support a device. Without knowing the exact chipset you are using, I can
suggest only that you first determine if yours is a full hardware modem or a so-
called Winmodem. I suspect it is the latter, because if it were a full hardware
modem you probably wouldn't be having any issues. Rather than updating your
Linux distribution, figure out which driver it was attempting to load and then go
to the Web to find an updated driver. Winmodem support under Linux is ever-
increasing (see www.linmodems.org for a good place to start). If you are lucky,
you will be able to find a newer, working, version of the driver you are looking
for—and save yourself a lot of trouble to boot.

—
Timothy Hamlin

thamlin@zeus.nmt.edu

mailto:thamlin@zeus.nmt.edu
mailto:manuel61@joimail.com
mailto:fbarousse@piensa.com
http://www.linmodems.org
mailto:thamlin@zeus.nmt.edu

Are you looking for a tweaky project to help you understand Winmodems, or do
you simply want a Net connection? Have a goal in mind before you decide
between the above two answers, and remember that if you upgrade, you may
need to redo your modem setup.

—
Don Marti

info@linuxjournal.com

 Getting Started

I would like to learn Red Hat 9. Can I install Red Hat 9 software and Windows
2003 server (Beta) software on the same PC? My PC is a Dell PIII with 700MZ,
6GB hard drive and 128MB of RAM. I know I will need to partition the hard
drive. I saw the software for sale on Amazon.com for about $70 US. I am new to
this and am trying to learn, so any assistance is appreciated.

—
Bill

whitesock95829@yahoo.com

Yes, you can install Linux and Windows on the same machine to create what is
called a dual-boot system. There are some details to watch, though. Red Hat 9
has been discontinued so, to play with Linux and and learn, I would get Fedora
Core 1 (Red Hat-sponsored) instead. You can download it from
fedora.redhat.com.

—
Felipe Barousse Boué

fbarousse@piensa.com

The easiest way to try Linux is download Knoppix from knoppix.org. This allows
you to try Linux and not impact your hard drive. Most distributions can be
downloaded for free, including Red Hat 9. You may want to search for a more
up-to-date distribution such as Fedora Core 2.

—
Christopher Wingert

mailto:info@linuxjournal.com
mailto:whitesock95829@yahoo.com
http://fedora.redhat.com
mailto:fbarousse@piensa.com
http://knoppix.org

cwingert@qualcomm.com

I haven't personally tried setting up a boot manager with Windows 2003 server
and don't intend to, but I have heard of several people doing so successfully.
The procedure seems the same as with earlier versions of Windows. Here are
the main things you need to be aware of:

1) Knoppix includes QtParted, a free software partition editor. The interface is
not as polished, but QtParted does just as good a job of partition editing as
PowerQuest's PartitionMagic and other proprietary programs, and you might
as well get in the spirit by doing the job with free software. Knoppix,
incidentally, makes a great rescue disk.

2) You'll want at least one partition for Linux and another of 125MB for a swap
partition. Opinions vary about how to partition, with some people favoring
putting the /home, /var and other directories on separate partitions. However,
because you're just starting out, perhaps you want to use only one.

3) You might also want a FAT32 partition so that you can share files between
your operating systems.

4) If Windows isn't already installed, install it first, right after you partition the
drive. Windows does not tolerate another operating system during installation.
You can work around the problems, but it's easier just to avoid them
altogether.

5) When you're installing, make sure you install the GRUB boot manager. The
installation automatically detects the presence of Windows, and the boot
manager loads when the machine starts and offers you a menu for choosing
which operating system you want to start.

—
Bruce Byfield

bbyfield@axionet.com

You don't need to resize your existing partitions with a partition editor if you're
installing from scratch. All Linux distributions include a basic partitioning tool. If
you do use a partition editor, keep in mind that if it fails you may lose
important data. Make sure to back up your existing system first, and check that
the backup is good before resizing any partition. Alternatively, as Rick Moen

mailto:cwingert@qualcomm.com
mailto:bbyfield@axionet.com

suggests, once you have a backup, you might as well just restore it to new
partitions and save yourself the partition resizing step entirely.

But, your 6GB drive is too small to run two current operating systems
comfortably. You might want to add a new, larger drive for Linux.

More advice for new users, including why dual boot is usually a bad idea, is in
“Welcome to Linux, 2004” on the Linux Journal Web site (www.linuxjournal.com/
article/7516).

—
Don Marti

info@linuxjournal.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.linuxjournal.com/article/7516
http://www.linuxjournal.com/article/7516
mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/toc123.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 New Products

XE-800 Embedded PC, PathScale Compiler IKO Compiler Suite, gumstix Boards
and Computers and more.

XE-800 Embedded PC

Octagon Systems released the XE-800, an SBC using the EPIC (embedded
platform for industrial computing) form factor. Sized midway between the PC/
104 and EBX form factors, the EPIC-based XE-800 is designed for embedded
military, security, industrial and mobile applications. It can operate over a –40°
to 75°C temperature range and features four USB 2.0 ports, two USB 1.1 ports,
two eight-wire serial ports, 48 lines of digital I/O, 10/100 Base-T Ethernet, CRT
and flat-panel video and PC/104 and PC/104-Plus expansion. A CompactFlash
socket is available for bootable and removable memory, up to 2GB. Companion
XE-800 OS Embedder kits, which include hardware and software for instant
operation, are available for Linux 2.6 and QNX.

Octagon Systems, 6510 West 91st Avenue, Westminster, Colorado 80031,
303-430-1500, www.octagonsystems.com.

PathScale Compiler EKO Compiler Suite

PathScale announced the availability of the EKO Compiler Suite for AMD
Opteron and Athlon 64 systems. The EKO Suite offers C, C++ and Fortran 9X
compilers and beta support for 32-bit x86 compilation. The PathScale compilers

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

provide binary compatibility, with the ability to mix and match the linking of
GNU GCC and PathScale compiled libraries and objects. The front ends are
source-compatible with the GNU compiler suite for C/C++. The Fortran 95
compiler provides support for the most common Cray/SGI extensions, and in-
line AMD64 assembly code also can be issued. The PathScale Compiler is
available in installable Linux RPM format and is tested on SuSE, Red Hat and
Fedora. The compilers can be purchased as subscriptions to the full EKO suite
or to separate languages.

PathScale, Inc., 477 North Mathilda Avenue, Sunnyvale, California 94085,
408-746-9100, www.pathscale.com.

gumstix Boards and Computers

gumstix, Inc., introduced a new line of tiny Linux single-board processors (SBCs)
and peripherals. Based on Intel's PXA255 processor with XScale technology,
gumstix tiny boards measure 20mm × 80mm × 8mm. The line includes two
gumxstix boards and two waysmall computers. The gumstix 200x and 400x
boards feature 200MHz and 400MHz Intel PXA255, respectively; both offer
64MB of SDRAM, 4MB of Flash, an OS, an MMC.SDT slot and multiple I/Os. The
waysmall 200x offers a gumstix 200x in a gumstix box, and the waysmall 400x
offers a gumstix 400x. Both gumstix boxes feature two mini-DIN8 serial ports,
one USB mini-B client port, a case and a power supply. The boards are
stackable and draw less than 250mA at 400MHz. A GCC toolchain offers access
to open-source software for porting. The boards ship with 4MB of Flash,
containing u-boot-1.0.0, kernel 2.6.4 and a root filesystem. The computers
include a BusyBox implementation with a Web server, a complete Linux kernel
and a cross-compiler.

gumstix, Inc., www.gumstix.com.

https://secure2.linuxjournal.com/ljarchive/LJ/123/7530f2.large.jpg

DigiChat AV Enterprise 5.0

DigiChat AV Enterprise 5.0 is Java software that enables Web-based chatting,
on-line collaboration, e-learning and moderated Webcasts. Features of version
5.0 include voice chat (VoIP), video chat (P2P), Web-based instant messaging
support, a GUI with skinnable interfaces, a high-performance text messaging
engine, HTTP tunneling support, scriptable BOTs support and scriptable
command-line and Java APIs. The new client-side plugin architecture allows
users to extend and create new programs within DigiChat. Version 5.0 also
offers an integrated IM application that can be installed locally. Users can share
text documents, PDFs, images, sounds and video directly through DigiChat.
DigiChat supports UNIX/Linux, Windows 9x/NT/2000/XP, Mac OS/OS X and
Solaris.

Digi-Net Technologies, Inc., 1034 Northwest 57th Street, Gainesville, Florida
32605, 877-404-2428, www.digi-net.com.

https://secure2.linuxjournal.com/ljarchive/LJ/123/7530f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7530f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7530f3.large.jpg

Visual SlickEdit 9

Version 9 of Visual SlickEdit, a development tool with a high-level code editor,
offers ten C++ refactorings to enable developers to improve the structure of
source code for better performance. Other new features in version 9 include a
Java GUI builder, full-screen editing and dual-monitor support, a backup history
that stores changes locally, CodeWright emulation and a new HTML Help and
tutorial assistant. To simplify builds, Visual SlickEdit offers a C/C++ auto-build
system as well as support for Ant. Visual SlickEdit includes integrated C/C++ and
Java debuggers. The advanced code editor features Context Tagging, which
offers language-specific coding assistance for a multitude of languages. The
DIFFzilla differencing system, which provides side-by-side file and directory
difference editing, works with three-way merge to support version control.

SlickEdit, Inc., 3000 Aerial Center Parkway, Suite 120, Morrisville, North Carolina
27560, 800-934-3348, www.slickedit.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/123/7530f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/123/7530f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/123/toc123.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	Indepth
	Embedded
	Toolbox
	Column
	Review
	Departments
	Rapid Application Development with Python and Glade
	David

Reed
	GladeGen Usage
	How GladeGen Works
	Summary
	Acknowledgements

	Cross-Platform Network Applications with Mono
	Ian

Pointer
	Obtaining Mono
	MonoBlog, a Weblog Editor
	Creating the GUI with libglade
	Retrieving Old Entries
	Editing Old Posts
	Updating the Weblog
	Preferences
	Error Handling
	Compiling and Running
	Conclusion

	Developing for Windows on Linux
	Joey

Bernard
	Win32 Programming
	Cross-Compiling
	Debugging with Wine
	Compiling a Native Version for Linux
	Conclusion

	A GUI for ps(1) Built with Mozilla
	Nigel

McFarlane

	Eclipse Goes Native
	John

Healy
	Andrew

Haley
	Tom

Tromey
	Motivation
	Approach
	Changes to libgcj
	Changes to Eclipse
	Profiling
	Limitations and Shameless Hacks
	Implications and Future Directions

	Clusters for Nothing and Nodes for Free
	Alexander Perry
	Hoke Trammell
	David Haynes
	Choose an Application
	Protect History
	Without a Cluster
	Initial Cluster
	Those Old Machines
	Coworkers
	Large Off-Peak Cluster
	Long-Term Use
	Further Logic Plans
	Conclusion

	uClinux for Linux Programmers
	David McCullough
	No Memory Management
	Kernel Differences
	Memory Allocation (Kernel and Application)
	Applications and Processes
	Shared Libraries
	Summary

	At the Forge
	Slash
	Reuven
 M.
Lerner
	Infrastructure
	Retrieving a Tagged Version from CVS
	A Simple Slash Site
	Conclusion

	Cooking with Linux
	It's a Cross Platform, All Right!
	Marcel Gagné

	Paranoid Penguin
	Secure Anonymous FTP with vsftpd
	Mick Bauer
	Getting and Installing vsftpd
	vsftpd's Documentation
	Standalone Dæmon vs. inetd/xinetd
	Configuring vsftpd for Anonymous FTP
	Virtual Servers

	EOF
	Carrier Grade Linux
	Ibrahim

Haddad

	Arkeia 5.2 Network Backup
	Dan Wilder
	Features
	Installation
	Architecture
	The GUI
	A Real Backup and Restore
	Tape Indexing
	Other
	Overall

	From the Editor
	Traps? Who Needs Them?
	Don Marti

	No Accounts for the Penguins?
	BSD, Please
	LJ Web Site—Too Political?
	Thanks for the Recommendation
	Everybody SPF Now!
	Shielded CPUs vs. RTLinux/RTAI
	Photo of the Month: More Fashion Ideas
	Bank Answer One: Monoculture Is Risk
	Answer Two: Moo-ve to Another Bank
	Answer Three: Fake It
	Another Satisfied Reader
	sudo adduser bhm
	UpFront
	diff -u: What's New in Kernel Development
	Zack Brown

	LJ Index—July 2004
	They Said It

	Best of Technical Support
	Adding a New Service
	Speeding Up Webmin
	Winmodem: Hack or Replace?
	Getting Started

	New Products
	XE-800 Embedded PC
	PathScale Compiler EKO Compiler Suite
	gumstix Boards and Computers
	DigiChat AV Enterprise 5.0
	Visual SlickEdit 9

